Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins researchers put proteins right where they want them

15.04.2010
Location, location, location determines a protein's role

Using a method they developed to watch moment to moment as they move a molecule to precise sites inside live human cells, Johns Hopkins scientists are closer to understanding why and how a protein at one location may signal division and growth, and the same protein at another location, death.

Their research, published Feb. 14 in Nature Methods, expands on a more limited method using a chemical tool to move proteins inside of cells to the periphery, a locale known as the plasma membrane.

"Where a particular protein is activated and the timing of that activation influence how a cell responds to outside stimulus," says Takanari Inoue, Ph.D., an assistant professor of cell biology at Johns Hopkins University School of Medicine. "Our goal with this newly expanded tool is to manipulate protein activities in many places in cells on a rapid timescale."

Cells cleverly have resolved the predicament of needing to respond to a near infinite array of external stimuli — temperature, for instance — even though they employ only a limited number of molecular players. The notion is that a single protein assumes multiple roles by changing its location or altering the speed and duration of activation.

Chemical signaling inside cells connects protein molecules through complex feedback loops and crosstalk, Inoue says, so knowing exactly how each protein contributes to which signals at what locations requires the ability to rapidly move proteins of interest to specific organelles found in cells. These include mitochondria (the power generators of cells) and Golgi bodies (the delivery systems of cells).

The Hopkins team chose the signaling protein Ras as the molecule it would attempt to send packing throughout a cell's interior. A regulator of cell growth that's often implicated in cancer, Ras has been long studied and it's known to be a molecular switch. However, no one has had the ability to discern what Ras does at different locations such as Golgi bodies and mitrochondria, much less what happens when Ras is activated simultaneously at any combination of these and other organelles.

Working with live human HeLa cells and Ras under a microscope, the team used a dimerization probe consisting of a special small molecule that simultaneously attracts two proteins that wouldn't normally have an affinity for each other and binds them together. In this system, one of the partner proteins is anchored to an organelle and the other is free floating inside the cell. Adding a chemical dimerizer induces the free protein to join the tethered one.

Using scissor-like enzymes, the team sliced and diced the DNA of the paired proteins to change the molecular address of its destination. They cut out the "mailing address" — known as a targeting sequence — that formerly delivered the protein unit to the plasma membrane and replaced it with new addresses (targeting sequences) that shipped it instead to specific organelles.

"We were able to manipulate protein activities in situ and very rapidly on each individual organelle," Inoue said. "Ultimately, this will help us to better understand protein function at these critical cellular components."

This study was funded by the National Institutes of Health.

In addition to Inoue, authors of this paper are Toru Komatsu, Igor Kukelyansky, J. Michael McCaffery, Tasuku Ueno and Lidenys C. Varela, all of Johns Hopkins.

On the Web:

http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/research/
research_centers/cell_dynamics/faculty.html
http://www.nature.com/nmeth/index.html

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>