Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins researchers put proteins right where they want them

15.04.2010
Location, location, location determines a protein's role

Using a method they developed to watch moment to moment as they move a molecule to precise sites inside live human cells, Johns Hopkins scientists are closer to understanding why and how a protein at one location may signal division and growth, and the same protein at another location, death.

Their research, published Feb. 14 in Nature Methods, expands on a more limited method using a chemical tool to move proteins inside of cells to the periphery, a locale known as the plasma membrane.

"Where a particular protein is activated and the timing of that activation influence how a cell responds to outside stimulus," says Takanari Inoue, Ph.D., an assistant professor of cell biology at Johns Hopkins University School of Medicine. "Our goal with this newly expanded tool is to manipulate protein activities in many places in cells on a rapid timescale."

Cells cleverly have resolved the predicament of needing to respond to a near infinite array of external stimuli — temperature, for instance — even though they employ only a limited number of molecular players. The notion is that a single protein assumes multiple roles by changing its location or altering the speed and duration of activation.

Chemical signaling inside cells connects protein molecules through complex feedback loops and crosstalk, Inoue says, so knowing exactly how each protein contributes to which signals at what locations requires the ability to rapidly move proteins of interest to specific organelles found in cells. These include mitochondria (the power generators of cells) and Golgi bodies (the delivery systems of cells).

The Hopkins team chose the signaling protein Ras as the molecule it would attempt to send packing throughout a cell's interior. A regulator of cell growth that's often implicated in cancer, Ras has been long studied and it's known to be a molecular switch. However, no one has had the ability to discern what Ras does at different locations such as Golgi bodies and mitrochondria, much less what happens when Ras is activated simultaneously at any combination of these and other organelles.

Working with live human HeLa cells and Ras under a microscope, the team used a dimerization probe consisting of a special small molecule that simultaneously attracts two proteins that wouldn't normally have an affinity for each other and binds them together. In this system, one of the partner proteins is anchored to an organelle and the other is free floating inside the cell. Adding a chemical dimerizer induces the free protein to join the tethered one.

Using scissor-like enzymes, the team sliced and diced the DNA of the paired proteins to change the molecular address of its destination. They cut out the "mailing address" — known as a targeting sequence — that formerly delivered the protein unit to the plasma membrane and replaced it with new addresses (targeting sequences) that shipped it instead to specific organelles.

"We were able to manipulate protein activities in situ and very rapidly on each individual organelle," Inoue said. "Ultimately, this will help us to better understand protein function at these critical cellular components."

This study was funded by the National Institutes of Health.

In addition to Inoue, authors of this paper are Toru Komatsu, Igor Kukelyansky, J. Michael McCaffery, Tasuku Ueno and Lidenys C. Varela, all of Johns Hopkins.

On the Web:

http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/research/
research_centers/cell_dynamics/faculty.html
http://www.nature.com/nmeth/index.html

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>