Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hope for Alzheimer’s Patients?

04.12.2008
Dipeptide blocks the formation of toxic amyloid â-peptide aggregates in mice

Alzheimer’s disease is the primary cause of age-related dementia. About 15 million people are affected by this neurodegenerative disease worldwide. It has so far not been possible to combat the causes of Alzheimer’s disease. Israeli researchers have now developed a novel approach for treatment. As they report in the journal Angewandte Chemie, the new drug, a molecule made from two nonphysiological amino acids, improves the cognitive abilities of mice with Alzheimer’s and reduces the amyloid plaques in their brains.

Many years before clinical symptoms appear, threadlike deposits of incorrectly folded amyloid â-peptides, known as plaques, form in the brains of Alzheimer’s patients. It was previously assumed that these plaques initiate the degeneration of nerve cells; however, more recent discoveries indicate that smaller, soluble aggregates of the amyloid-forming peptide are the actual cause for the loss of learning and memory functions. These oligomers of about twelve peptide units have a strong toxic effect on nerve cells. The new therapeutic approach taken by researchers working with Ehud Gazit at the University of Tel Aviv aims to block the formation of these toxic oligomers.

A drug molecule was rationally designed that contains an aromatic amino acid and a â-sheet breaker. Aromatic side-groups play a key role in the aggregation of amyloid-forming peptides; the drug should thus bind to the aromatic core of the â-amyloid peptide through its aromatic element. Also, in amyloid aggregates, the proteins adopt the form of â-sheets that are folded like accordions; the drug should thus be a â-breaker, a molecule that prevents proteins from folding into â-sheets. In addition, the molecule must be small so that it can be absorbed by the digestive tract after oral ingestion. It must also not be rapidly degraded by the body and must be nontoxic.

The small dipeptide—a molecule made of two amino acids—developed by Gazit’s team meets all of these requirements: the nonphysiological amino acid á-aminoisobutyric acid acts as a â-breaker, and the second amino acid, D-tryptophan, contains an indole group, which is an effective binder of aromatics. At the same time, D-tryptophan stabilizes the dipeptide, because D-amino acids are broken down more slowly in the body than are the physiological L-amino acids.

When genetically altered mice with Alzheimer’s disease are treated with the dipeptide, their disrupted cognitive functions normalize. A significant decrease in the concentration of amyloid-forming â-peptides and in the size of the plaques was found in the brains of these mice.

Author: Ehud Gazit, Tel Aviv University (Israel), http://www.tau.ac.il/lifesci/departments/biotech/members/gazit/gazit.html

Title: Cognitive-Performance Recovery of Alzheimer's Disease Model Mice by Modulation of Early Soluble Amyloidal Assemblies

Angewandte Chemie International Edition, doi: 10.1002/anie.200802123

Ehud Gazit | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.tau.ac.il/lifesci/departments/biotech/members/gazit/gazit.html

More articles from Life Sciences:

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

nachricht Atomic-level motion may drive bacteria's ability to evade immune system defenses
24.04.2017 | Indiana University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>