Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hohenstein Institute develops textile that releases medicinal gasses

New principle for anti-microbial textile products

The Institute for Hygiene and Biotechnology (IHB) at Hohenstein has developed the first textile that can release medically effective gasses. The textile was developed at the IHB under the auspices of a broader research project. The textile will be used in future therapeutic applications.

The prototype that has been developed consists of cotton fibres that have been refined with silicon oxide particles by using nanosol technology. Bonded into this matrix is a substance that functions as a dispenser for nitrogen monoxide (which is also known as nitric oxide). It releases the gas under physiological conditions.

The areas in which a material that emits nitric oxide could be applied are diverse because the molecules of the gas possess a wide range of characteristics. Nitric oxide is naturally present in the human body, where it serves a number of biological purposes, including, e.g., for vasodilatation and as a molecular neurotransmitter.

In addition, nitric oxide also has an anti-bacterial effect based on destruction of the cell membranes of bacteria, damage to their genetic material and restriction of their metabolism for energy.

One decisive factor in ensuring nitric oxide's effect is guaranteeing it is released close to the site of application, because the molecule itself has a very short half-life. As a result, scientists at the Hohenstein Institute used nitric oxide coating techniques primarily in the development of anti-bacterial textiles for use in dentistry. Publications of other working groups, however, suggest that coatings that release nitric oxide could also be used for implants such as catheters, prostheses, or in vivo sensors, where they could prevent the adhesion of bacteria.

In addition to demonstrating the release of nitric oxide from the textile, the scientists at the IHB have also proven the anti-microbial efficacy of the gas releasing textile material with the help of the DIN EN ISO 20743 standard and developed a system for measuring nitric oxide in the physiological environment of the mouth. Detailed results are expected to be published end 2010 when the research project "Nitric Oxide Releasing Dental Cotton Rolls with Anti-microbial Effect" (AiF-Nr. 15721 N) will be completed.

The research project AiF-Nr. 15721 N of the registered association Forschungskuratorium Textil e.V. is financed as part of the programme to promote Industrial Community Research (IGF) of the German Ministry for Economy and Technology (BMWi) through the "Otto-von-Guericke" German Federation of Industrial Research Associations (AiF).

Rose-Marie Riedl | idw
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>