Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hohenstein Institute develops textile that releases medicinal gasses

04.06.2009
New principle for anti-microbial textile products

The Institute for Hygiene and Biotechnology (IHB) at Hohenstein has developed the first textile that can release medically effective gasses. The textile was developed at the IHB under the auspices of a broader research project. The textile will be used in future therapeutic applications.

The prototype that has been developed consists of cotton fibres that have been refined with silicon oxide particles by using nanosol technology. Bonded into this matrix is a substance that functions as a dispenser for nitrogen monoxide (which is also known as nitric oxide). It releases the gas under physiological conditions.

The areas in which a material that emits nitric oxide could be applied are diverse because the molecules of the gas possess a wide range of characteristics. Nitric oxide is naturally present in the human body, where it serves a number of biological purposes, including, e.g., for vasodilatation and as a molecular neurotransmitter.

In addition, nitric oxide also has an anti-bacterial effect based on destruction of the cell membranes of bacteria, damage to their genetic material and restriction of their metabolism for energy.

One decisive factor in ensuring nitric oxide's effect is guaranteeing it is released close to the site of application, because the molecule itself has a very short half-life. As a result, scientists at the Hohenstein Institute used nitric oxide coating techniques primarily in the development of anti-bacterial textiles for use in dentistry. Publications of other working groups, however, suggest that coatings that release nitric oxide could also be used for implants such as catheters, prostheses, or in vivo sensors, where they could prevent the adhesion of bacteria.

In addition to demonstrating the release of nitric oxide from the textile, the scientists at the IHB have also proven the anti-microbial efficacy of the gas releasing textile material with the help of the DIN EN ISO 20743 standard and developed a system for measuring nitric oxide in the physiological environment of the mouth. Detailed results are expected to be published end 2010 when the research project "Nitric Oxide Releasing Dental Cotton Rolls with Anti-microbial Effect" (AiF-Nr. 15721 N) will be completed.

The research project AiF-Nr. 15721 N of the registered association Forschungskuratorium Textil e.V. is financed as part of the programme to promote Industrial Community Research (IGF) of the German Ministry for Economy and Technology (BMWi) through the "Otto-von-Guericke" German Federation of Industrial Research Associations (AiF).

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de/en/content/content1.asp?hohenstein=47-0-0-660-2009

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>