Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV makes protein that may help virus's resurgence

28.02.2011
Children's Hospital of Philadelphia study sheds light on how HIV takes over cell cycle

New research enhances the current knowledge of how human immunodeficiency virus type-1 (HIV-1), which causes AIDS, controls the cell cycle of cells that it infects. The new findings may shed light on how the virus reactivates after entering a dormant state, called latency.

"As we better understand the biological events that revive HIV from latency, we hope to devise ways to eventually intervene in this process with better treatments for people with HIV infection," said study leader Terri H. Finkel, M.D., Ph.D., chief of Rheumatology at The Children's Hospital of Philadelphia.

Finkel is the senior author of a study published in the Jan. 27 issue of the journal Blood. The first author, also from Children's Hospital, is Jiangfang Wang, M.D., Ph.D.

Viral latency is one of the persistent problems in treating HIV infection. Current combinations of anti-HIV drugs can reduce HIV to undetectable levels, but the virus hides in latently infected cells in a sort of hibernation. If a patient stops taking medication, or is weakened by a different infection, HIV can make a resurgence out of its viral reservoirs, often becoming resistant to previously effective drugs.

The current study focused on a protein, Vif (for viral infectivity factor), that HIV-1 produces. Finkel and colleagues previously discovered that Vif causes HIV-infected cells to stop growing at one phase of the cell cycle, the G2 phase. The study team has now found that Vif also acts at an earlier stage in the cell cycle, driving cells out of the G1 phase and into the more active S phase.

This activity may be important, said Finkel, because G1 is a resting phase, and a biological interaction that "wakes up" a latent infected cell may reactivate the infection. Other viruses that have a latent infectious state, such as the herpes virus and the Epstein-Barr virus, also express proteins that drive a transition from G1 to S phase. "By regulating the cell cycle, viruses control their infectivity," said Finkel.

The researchers carried out their work in HeLa cells, a human cell line long used in cell studies, as well as in human T cells, immune cells found in the blood. They identified two proteins, Brd4 and Cdk9, which interact with Vif. This interaction was a new discovery, although the proteins were already known to regulate the progression of the cell cycle.

Identifying Vif's cellular partners may also implicate them as potential targets for therapy. "If we can interrupt the activity of Brd4 or Cdk9, we may be able to prevent latent infection from becoming active," said Finkel. "Alternatively, by harnessing Brd4 or Cdk9, we may be able to drive cells out of latency and make the virus susceptible to anti-HIV drugs." She added that early preclinical testing of inhibitors is getting under way for other conditions, but cautioned that it is too early to foresee whether, or how soon, her research findings will lead to clinical treatments for HIV.

The National Institutes of Health, the Children's Hospital of Philadelphia Research Institute, and the University of Pennsylvania Center for AIDS Research contributed support to this study.

"HIV-1 Vif promotes the G1-to S-phase cell-cycle transition," Blood, Jan. 27, 2011. doi: 10.1182/blood-2010-06-289215

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking third in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 460-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

Further reports about: Aids HIV HIV infection HIV-1 anti-HIV drug blood flow cell cycle health services immune cell

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>