Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-res view of zinc transport protein

15.09.2009
Reveals shape-shifting atomic interactions; suggests mechanism and possible drug targets

How much difference can a tenth of a nanometer make? When it comes to figuring out how proteins work, an improvement in resolution of that miniscule amount can mean the difference between seeing where atoms are and understanding how they interact.

Case in point: New, improved-resolution views of a zinc transporter protein deciphered at the U.S. Department of Energy's Brookhaven National Laboratory provide not just a structure but also a suggested mechanism for how cells sense and regulate zinc, an element that is essential for life, but which must be kept at a steady state to avoid problems like seizures, diabetes, and possibly Alzheimer's disease.

The new findings, to be published online on September 13, 2009, by Nature Structural & Molecular Biology, also suggest targets for zinc-regulating drugs, and may even advance the understanding of similar zinc-regulating enzymes in plant chloroplasts with possible implications for biofuel production.

"Our goal is to reveal atomic interactions in a protein structure to understand the chemistry that underlies the protein's biological function," said Brookhaven biologist Dax Fu, who led the research. "With this structure, we can begin to understand the mechanism of zinc transport at a chemical level."

The structure was revealed using x-ray crystallography at Brookhaven Lab's [http://www.nsls.bnl.gov/] National Synchrotron Light Source (NSLS), a source of intense x-ray, ultraviolet, and infrared light. By studying how x-rays bounce off crystallized samples of a protein, scientists can reconstruct the location and orientation of the protein's atoms in three dimensions.

The Brookhaven team had previously used NSLS to solve a zinc transporter protein structure at lower resolution*. To achieve the new-and-improved structure, the scientists added mercury atoms to stabilize protein packing in the crystals. This increased the resolution of their x-ray vision by a mere angstrom (tenth of a nanometer). But because it brought the overall resolution of their structure to just below 3 angstroms — the point at which individual atoms begin to become visible — it enabled the scientists to see the protein in action as it bound to and transported zinc ions.

Using fluorescent probes, the scientists also studied how the protein changed shape in response to zinc binding. And they tested how changes to structural elements of the zinc transporter protein would affect its ability to transport zinc.

Together, these experiments suggest an auto-regulatory mechanism for zinc transport: Zinc binding within the cell triggers hinge-like movements of two electrically repulsive portions of the protein that lie within the cell's interior, which results in a conformational change in the portion of the protein that traverses the cellular membrane. So when zinc levels inside the cell rise too high, this shape shifting somehow pushes zinc ions through the membrane and out of the cell.

"Exactly how the protein pushes the zinc ions through the membrane has yet to be determined," said Fu, who added that this will be a focus of future research.

Conceivably, he added, drugs that bind to the zinc-sensing portions of the protein could be used to modulate zinc transport activity and help adjust zinc levels as possible treatments for diseases such as seizure disorders or diabetes. Brookhaven Science Associates, which manages Brookhaven Lab, has filed a patent application related to this work.

In addition, because other metal transporting proteins share similar architecture with the zinc transporter protein, the findings from this study may advance the understanding of other medical disorders linked to metal imbalance, as well as the development of possible treatments for those conditions.

Furthermore, this work may have implications for researchers trying to improve the prospects of biomass production in plants, an essential component to the development of biofuels. Zinc is an essential co-factor in a host of reactions in chloroplasts, the site of photosynthesis. But as is the case in animals, excess metals can be highly toxic in plants. Consequently, studies to help elucidate zinc-transporter protein function could help scientists understand how plants maintain the delicate balance needed for ideal growth.

Future studies of protein structures at Brookhaven Lab promise to reveal even greater mechanistic detail when a new light source, known as NSLS-II, opens in 2015. That facility, now under construction, will be 10,000 times brighter than NSLS. That boost in brightness — and therefore resolution — would be particularly important in the study of membrane proteins, which represent the vast majority of proteins of interest to those developing drugs, but which are also often difficult to crystallize.

"As illustrated by this study, even small improvements in x-ray diffraction resolution can greatly advance our mechanistic understanding of protein function," said Fu.

This research was performed at beamline X25A at the NSLS. The work was supported by the National Institutes of Health, DOE's Office of Science (Office of Basic Energy Sciences), and by the Biology Department at Brookhaven Lab.

Related Links

* Previous News Release: Zinc Transporter Protein Structure Deciphered: http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=07-89

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov
http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=07-89
http://www.bnl.gov/newsroom

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>