Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hidden Soil Fungus, Now Revealed, Is in a Class All Its Own

15.08.2011
A type of fungus that's been lurking underground for millions of years, previously known to science only through its DNA, has been cultured, photographed, named and assigned a place on the tree of life.

Researchers say it represents an entirely new class of fungi: the Archaeorhizomycetes. Like the discovery of a weird type of aquatic fungus that made headlines a few months ago, this finding offers a glimpse at the rich diversity of microorganisms that share our world but remain hidden from view.

The fungal phenomenon, brought to light by researchers at the University of Michigan, the Swedish University of Agricultural Sciences, the Imperial College London and Royal Botanic Gardens and the University of Aberdeen, is described in the Aug. 12 issue of the journal Science.

Although unseen until recently, the fungus was known to be extremely common in soil. Its presence was detected in studies of environmental DNA---genetic material from a living organism that is detected in bulk environmental samples, such as samples of the soil or water in which the organism lives.

"You couldn't really sample the soil without finding evidence of it," said Timothy James, a U-M assistant professor of ecology and evolutionary biology and an assistant curator at the university's herbarium. "So people really wanted to know what it looks like."

That became possible thanks to the work of the Swedish researchers, led by mycologist Anna Rosling. The researchers were studying mycorrhizae---fungi that colonize plant roots---when they discovered that some root tips harbored not only the mycorrhizae they were interested in, but also an unfamiliar fungus.

"When culturing mycorrhizal fungi from coniferous roots we were exited to find that one of the cultures represented this unfamiliar fungus," said Anna Rosling.

Later the culture was identified as a member of Soil Clone Group 1 (SCG1), a ubiquitous but enigmatic lineage known only from environmental DNA. It's not especially impressive to look at, James concedes: "It doesn't make some crazy structure that nobody's ever seen." But simply seeing and photographing a form of life that's been invisible until now is cause for excitement.

Having in hand a member of the elusive fungal group, the Swedish scientists and their collaborators have been able to study the group in more detail than ever before possible, using electron microscopy, DNA sequencing and in vitro growth studies to characterize it. The fungus they cultured is a slow-growing form that produces none of the typical aerial or aquatically dispersed spores most fungi typically reproduce with, suggesting it seldom if ever sees the light of day.

"By finding that it is slow growing and only produces spores in the soil, we can provide an explanation for why it has taken so long to be cultured," James said. The researchers also performed experiments aimed at understanding how the fungus, dubbed Archaeorhizomyces finlayi, interacts with the environment and with other organisms.

"We don't have any evidence that it's pathogenic; we don't have any evidence that it's mutualistic and doing anything beneficial for the plant," James said. "It's a little bit of a boring fungus." It may, however, help break down and recycle dead plants, a common---and extremely important---job for fungi. Hints of this role come from the observation that A. finlayi grows in the lab if provided with food in the form of glucose or cellulose (the main structural component of plant cell walls).

"Because it is so common in the soil, it must be very successful at what it does, and that role must be ecologically relevant," Rosling said.

Now that the researchers have ruled out some typical fungal roles---such as pathogen, benign endophyte, and member of a mycorrhizal association---they hope to find out through additional experiments exactly what role the fungus does play in nature and how it interacts with plants and other fungi.

"At this point we're still in the early stages of understanding what it's doing out there," James said.

Whether A. finlayi turns out to be beneficial or detrimental to the plants or microbes it interacts with, it's sure to contribute to understanding the diverse array of fungi in the world.

Though environmental DNA of SCG1 had been collected and reported in more than 50 previous studies, the type of DNA collected in the past didn't lend itself to analyses that would definitively pinpoint the group's position on the tree of life.

"Now that we have the culture, we can sequence almost any gene we want, so that's what we've done," James said.

The resulting information, combined with DNA data from the previous studies, revealed that A. finlayi belongs in an eclectic subphylum known as Taphrinomycotina, other members of which include the yeast Schizosaccharomyces, often used in studies of cell biology and evolution, and Pneumocystis, which can cause pneumonia in people with weakened immune systems, such as those who have cancer or HIV/AIDS or are undergoing treatment with immune-suppressing drugs.

In addition to James and Rosling, who is currently a visiting research associate at Indiana University, the paper's authors include Filipa Cox of the Imperial College London and Royal Botanic Gardens; Karelyn Cruz-Martinez, Katarina Ihrmark, Björn Lindahl and Audrius Menkis of the Swedish University of Agricultural Sciences; and Gwen-Aëlle Grelet of the University of Aberdeen.

The research was funded by the Carl Trygger Foundation, The Swedish Research Council Formas and the National Environment Research Council (UK).

Timothy James: www.lsa.umich.edu/eeb/directory/faculty/tyjames

Anna Rosling: www.slu.se/sv/fakulteter/nl/om-fakulteten/institutioner/institutionen-for-skoglig-mykologi-och-patologi/kontakt/personliga-hemsidor/anna-rosling

| University of Michigan
Further information:
http://www.sciencemag.org
http://www.umich.edu

Further reports about: Agricultural Research Agricultural Sciences DNA Science TV Soil fungus immune system

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>