Helping neurons stay on track

The complex inner wiring of the brain is coordinated in part by chemical guidance factors that help direct the interactions between individual neurons. As growing cells extend their axons outward, these tendrils are simultaneously drawn in the correct direction by attractive signals and steered away from ‘wrong turns’ by repulsive signals.

New work from a team led by Hiroyuki Kabayama and Katsuhiko Mikoshiba of the RIKEN Brain Science Institute in Wako has revealed insights into how one of these repulsive guidance cues, semaphorin 3A (Sema3A), gives axons their marching orders. In an earlier study, the researchers found evidence that Sema3A causes large-scale internalization of the cellular membrane at the growth cone, the tip of the growing axon, and determined that this internalization occurs via a process known as macropinocytosis. “These findings suggested an important role for massive, macropinocytosis-mediated membrane retrieval during Sema3A-induced growth cone collapse,” says Kabayama.

The neurotoxin C1, a protease enzyme, induces similar effects on growth cones, and Kabayama and Mikoshiba and their colleagues were able to uncover Sema3A’s mode of action via experiments using this enzyme. Based on a series of experiments with cultured neurons isolated from chick embryos, the researchers determined that the enzyme works by breaking down syntaxin 1B (Syx1B), a protein with a prominent role in membrane trafficking, thereby releasing an inhibitory mechanism that otherwise keeps macropinocytosis in check.

Accordingly, direct inhibition of Syx1B expression in neurons led to reduced axonal growth and increased growth cone collapse. On the other hand, treatment with the macropinocytosis-inhibiting compound EIPA countered the growth cone-collapsing effects of either neurotoxin C1 or inhibition of Syx1B. The researchers also found that this drug alone was sufficient to undermine Sema3A’s axon-repulsive effects

Kabayama, Mikoshiba and colleagues obtained additional confirmation of the central role of Syx1B in experiments that revealed that the treatment of neurons with Sema3A triggers rapid degradation of this protein as a prelude to the initiation of macropinocytosis. This effect could be countered by forcing these cells to overexpress Syx1B. Kabayama also notes that another repulsive signal, ephrin A2, appears to act via the same cellular mechanism. “It is likely that repulsive axon guidance is generally mediated by syntaxin 1B-regulated macropinocytosis,” he says.

In future studies, Kabayama and Mikoshiba intend to test this hypothesis by manipulating this pathway in transgenic animals. “We are going to generate Syx1B-overexpressing mice and investigate whether inhibition of macropinocytosis by Syx1B can prevent ephrin A2- or Sema3A-dependent growth cone collapse,” says Mikoshiba.

The corresponding author for this highlight is based at the Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute

References
Kabayama, H., Takeuchi, M., Taniguchi, M., Tokushige, N., Kozaki, S., Mizutani, A., Nakamura, T. & Mikoshiba, K. Syntaxin 1B suppresses macropinocytosis and semaphorin 3A-induced growth cone collapse. The Journal of Neuroscience 31, 7357–7364 (2011).

Kabayama, H., Nakamura, T., Takeuchi, M., Iwasaki, H., Taniguchi, M., Tokushige, N. & Mikoshiba, K. Ca2+ induces macropinocytosis via F-actin depolymerization during growth cone collapse. Molecular and Cellular Neuroscience 40, 27–38 (2009).

Media Contact

gro-pr Research asia research news

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors