Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helpers for energy acquisition from plants

06.09.2016

Research into plant cells is far from complete. Scientists under the biochemist Professor Peter Dörmann at Universität Bonn have now succeeded in describing the function of chloroplasts in more detail. These are plant and algal cell structures that are responsible for photosynthesis. The results have now been published in the scientific journal "Proceedings of the National Academy of Sciences of the USA" (PNAS).

The study makes reference to the endosymbiotic theory, which was put forward back in 1883 by the Bonn university scholar Andreas Franz Wilhelm Schimper and has long been viewed as proven.


Investigated the chloroplasts of Arabidopsis thaliana: Barbara Kalisch and Prof. Peter Dörmann of the Institute of Molecular Physiology and Biotechnology of Plants at Universität Bonn.

© Photo: Barbara Frommann / University of Bonn

According to the theory, at least a billion years ago, a photosynthetic bacterium must have penetrated a plant host cell, where it developed into a chloroplast. Without this so-called "endosymbiosis", photosynthesis, which is the process by which light energy converts carbon dioxide and water into sugar and oxygen, would not be possible in plants.

This former bacterium inside the host cell is surrounded by two membranes. The predominant components of these membranes are the so-called galactolipids. These two envelope membranes were the focus of attention of the scientists during their years of investigation.

"The question that our research sought to answer was exactly what each membrane is responsible for", explains Professor Peter Dörmann, Director of the Institute of Molecular Physiology and Biotechnology of Plants at Universität Bonn.

Scientists experiment with plant mutants

For this purpose, the scientists experimented with mutants of the often-used research plant thale cress (Arabidopsis thaliana). They modified the mutant plant by adding various genetically manipulated variants of a protein of the galactolipid production system, which is located on the outer membrane of the chloroplast. The most important finding: This protein is essential for the embedding of the former bacterium in the cell.

"Without the protein, the chloroplast cannot survive. Without the chloroplast, the plant cannot survive", says Barbara Kalisch, doctoral researcher at Universität Bonn, who was one of the lead authors for the now published article.

"Lipids cannot simply move through water"

In addition to the production of the galactolipids, the protein is also involved in the transfer of galactolipids from the outer to the inner of the two envelope membranes. In their experiments, the researchers also placed the protein artificially on the inner membrane. Lipid production worked there, too; the plant remained able to survive. When the protein is on the inner envelope membrane, no further transport is necessary. Why the location in nature is on the outside and not the inside, has not yet been clarified.

The experiments also indicate that the protein is the reason that there can be any lipid exchange at all between the two envelope membranes of the chloroplasts. That is important, so that the chloroplast, and with it the plant, can grow. The space between the two envelope membranes is filled with water, but "lipids cannot simply move through water", explains Prof. Peter Dörmann of Universität Bonn. However, other factors can affect this lipid exchange. "Our investigations to date certainly do not represent the end of our research", says Dörmann.

Publication: Amélie A. Kelly, Barbara Kalisch, Georg Hölzl, Sandra Schulze, Juliane Thiele, Michael Melzer, Rebecca L. Roston, Christoph Benning, and Peter Dörmann: Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana, "Proceedings of the National Academy of Sciences of the USA", DOI: 10.1073/pnas.1609184113

Contact for the media:

Prof. Peter Dörmann
Institute of Molecular Physiology and
Biotechnology of Plants
Universität Bonn
Tel.: +49-228 73-2830
E-Mail: doermann@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>