Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University research holds promise for development of new osteoporosis drug

05.10.2010
Researchers at the Hebrew University of Jerusalem have discovered a group of substances in the body that play a key role in controlling bone density, and on this basis they have begun development of a drug for prevention and treatment of osteoporosis and other bone disorders.

The findings of the Hebrew University researchers have just been published in the American journal PNAS (Proceedings of the National Academy of Sciences).

The research group working on the project is headed by Prof. Itai Bab of the Bone Laboratory and Prof. Raphael Mechoulam of the Institute of Drug Research at the Hebrew University, and includes post-doctoral fellow Reem Smoum and doctoral students Gary Millman, Orr Ofek, Alon Bajayo, Joseph Tam, Vardit Kram and associates from the United States.

Osteoporosis is the most widespread degenerative disease in the Western world and is expressed in the loss of bone mass and the weakening of bone structure, contributing to frequent bone fractures, disability and even death. The loss of bone mass in osteoporosis is caused by internal destruction of the bone tissue. With age, the quantity of bone tissue that is lost is greater than that which is created, which leads to the decrease in bone density.

In their current research, the researchers found that the bone cells produce a series of substances composed of fatty acids and amino acids called "acyl amides." They then analyzed their precise chemical composition, created synthetic versions of them, and examined their effect on bone cell cultures.

In experiments on mice, they discovered that one of the compounds in the group of synthetic materials, oleoyl serine, increased bone density in both healthy and osteoporotic mice. They also found that the osteoporotic mice were actually missing the oleoyl serine in their bones. These findings, say the researchers, can serve as the basis for new drugs that can both prevent bone loss and boost bone formation and in this way reverse loss of bone tissue in osteoporosis patients.

Development of such a drug has begun in the laboratories of Prof. Mechoulam and Prof. Bab. Yissum, the technology transfer company of the Hebrew University, has submitted a patent application based on their work and is seeking a commercial partner for further development.

Prof. Mechoulam expressed confidence that their work showing bone mass accumulation would lead soon to the development of an effective osteoporosis drug. Drugs in use until now have worked to prevent further bone loss or to encourage bone formation, but none of them are able to accomplish both functions together as this new formula can do, said Prof. Bab.

The researchers noted that research in this field until now has been based primarily on proteins and genetics. Now, the Hebrew University researchers say, they have opened a new approach, called "skeletal lipidomics" based on the examination of substances in the skeleton containing fatty acids and amino acids. This has great significance in understanding the regulation of metabolism in bone and in other body tissues, they say.

The research has been supported by the United States-Israel Binational Science Foundation and also by a grant from the US National Institutes of Health.

Jerry Barach | EurekAlert!
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>