Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University research holds promise for development of new osteoporosis drug

05.10.2010
Researchers at the Hebrew University of Jerusalem have discovered a group of substances in the body that play a key role in controlling bone density, and on this basis they have begun development of a drug for prevention and treatment of osteoporosis and other bone disorders.

The findings of the Hebrew University researchers have just been published in the American journal PNAS (Proceedings of the National Academy of Sciences).

The research group working on the project is headed by Prof. Itai Bab of the Bone Laboratory and Prof. Raphael Mechoulam of the Institute of Drug Research at the Hebrew University, and includes post-doctoral fellow Reem Smoum and doctoral students Gary Millman, Orr Ofek, Alon Bajayo, Joseph Tam, Vardit Kram and associates from the United States.

Osteoporosis is the most widespread degenerative disease in the Western world and is expressed in the loss of bone mass and the weakening of bone structure, contributing to frequent bone fractures, disability and even death. The loss of bone mass in osteoporosis is caused by internal destruction of the bone tissue. With age, the quantity of bone tissue that is lost is greater than that which is created, which leads to the decrease in bone density.

In their current research, the researchers found that the bone cells produce a series of substances composed of fatty acids and amino acids called "acyl amides." They then analyzed their precise chemical composition, created synthetic versions of them, and examined their effect on bone cell cultures.

In experiments on mice, they discovered that one of the compounds in the group of synthetic materials, oleoyl serine, increased bone density in both healthy and osteoporotic mice. They also found that the osteoporotic mice were actually missing the oleoyl serine in their bones. These findings, say the researchers, can serve as the basis for new drugs that can both prevent bone loss and boost bone formation and in this way reverse loss of bone tissue in osteoporosis patients.

Development of such a drug has begun in the laboratories of Prof. Mechoulam and Prof. Bab. Yissum, the technology transfer company of the Hebrew University, has submitted a patent application based on their work and is seeking a commercial partner for further development.

Prof. Mechoulam expressed confidence that their work showing bone mass accumulation would lead soon to the development of an effective osteoporosis drug. Drugs in use until now have worked to prevent further bone loss or to encourage bone formation, but none of them are able to accomplish both functions together as this new formula can do, said Prof. Bab.

The researchers noted that research in this field until now has been based primarily on proteins and genetics. Now, the Hebrew University researchers say, they have opened a new approach, called "skeletal lipidomics" based on the examination of substances in the skeleton containing fatty acids and amino acids. This has great significance in understanding the regulation of metabolism in bone and in other body tissues, they say.

The research has been supported by the United States-Israel Binational Science Foundation and also by a grant from the US National Institutes of Health.

Jerry Barach | EurekAlert!
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>