Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University research holds promise for development of new osteoporosis drug

05.10.2010
Researchers at the Hebrew University of Jerusalem have discovered a group of substances in the body that play a key role in controlling bone density, and on this basis they have begun development of a drug for prevention and treatment of osteoporosis and other bone disorders.

The findings of the Hebrew University researchers have just been published in the American journal PNAS (Proceedings of the National Academy of Sciences).

The research group working on the project is headed by Prof. Itai Bab of the Bone Laboratory and Prof. Raphael Mechoulam of the Institute of Drug Research at the Hebrew University, and includes post-doctoral fellow Reem Smoum and doctoral students Gary Millman, Orr Ofek, Alon Bajayo, Joseph Tam, Vardit Kram and associates from the United States.

Osteoporosis is the most widespread degenerative disease in the Western world and is expressed in the loss of bone mass and the weakening of bone structure, contributing to frequent bone fractures, disability and even death. The loss of bone mass in osteoporosis is caused by internal destruction of the bone tissue. With age, the quantity of bone tissue that is lost is greater than that which is created, which leads to the decrease in bone density.

In their current research, the researchers found that the bone cells produce a series of substances composed of fatty acids and amino acids called "acyl amides." They then analyzed their precise chemical composition, created synthetic versions of them, and examined their effect on bone cell cultures.

In experiments on mice, they discovered that one of the compounds in the group of synthetic materials, oleoyl serine, increased bone density in both healthy and osteoporotic mice. They also found that the osteoporotic mice were actually missing the oleoyl serine in their bones. These findings, say the researchers, can serve as the basis for new drugs that can both prevent bone loss and boost bone formation and in this way reverse loss of bone tissue in osteoporosis patients.

Development of such a drug has begun in the laboratories of Prof. Mechoulam and Prof. Bab. Yissum, the technology transfer company of the Hebrew University, has submitted a patent application based on their work and is seeking a commercial partner for further development.

Prof. Mechoulam expressed confidence that their work showing bone mass accumulation would lead soon to the development of an effective osteoporosis drug. Drugs in use until now have worked to prevent further bone loss or to encourage bone formation, but none of them are able to accomplish both functions together as this new formula can do, said Prof. Bab.

The researchers noted that research in this field until now has been based primarily on proteins and genetics. Now, the Hebrew University researchers say, they have opened a new approach, called "skeletal lipidomics" based on the examination of substances in the skeleton containing fatty acids and amino acids. This has great significance in understanding the regulation of metabolism in bone and in other body tissues, they say.

The research has been supported by the United States-Israel Binational Science Foundation and also by a grant from the US National Institutes of Health.

Jerry Barach | EurekAlert!
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>