Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heavy Pyridine Crystallizes Differently

08.01.2009
Deuterated pyridine adopts a different crystalline form: a useful effect for pharmaceuticals?

The nuclei of ordinary hydrogen atoms contain only a single proton. If a neutron is added, the hydrogen becomes deuterium. In principle, molecules that contain deuterium in place of hydrogen atoms are chemically identical. However, there can be significant differences.

Thus “heavy water”, water with molecules that contain deuterium in place of hydrogen, is toxic because it disrupts highly sensitive biochemical processes in the body and leads to metabolic failure. As researchers report in the journal Angewandte Chemie, when the hydrogen atoms of pyridine are replaced with deuterium, it adopts a crystalline form that can only be achieved under high pressure with “normal” pyridine. Perhaps the minimal differences responsible for this type of effect can be implemented to improve the spectrum of properties available to pharmaceutical agents.

Pyridine is a six-membered ring with five carbon atoms and one nitrogen atom. The carbon atoms are each attached to one hydrogen atom. These can be replaced with deuterium. Researchers led by Roland Boese at the University of Duisburg–Essen have discovered that deuterated pyridine crystallizes at about –85 °C with a different crystal structure than that usually adopted by pyridine. In parallel, British researchers working with Simon Parsons determined that non-deuterated pyridine also adopts this structure under high pressure, because it occupies a smaller volume than pyridine’s usual structure.

The replacement of hydrogen by deuterium clearly changes the strength of interactions between individual groups of atoms in neighboring molecules, making other arrangements more energetically favorable. Such interactions between groups of atoms also play an important role in pharmaceuticals, such as when a drug is meant to fit into the binding cavity of an enzyme. Subtle changes can result in significant changes in a drug’s activity. This is why Boese and his team are interested in deuterated pyridine: pyridine is an important starting material for pharmaceuticals, and its basic framework is found in many medications. Boese thinks it likely that deuteration will allow for the development of drug variants that are more specific or have fewer side effects than their conventional precursors.

Author: Roland Boese, Universität Duisburg-Essen (Germany), http://www.structchem.uni-duisburg-essen.de/Dateien/Mitarbeiter/Boese/FR_Boese_en.htm

Title: Isotopic Polymorphism in Pyridine

Angewandte Chemie International Edition 2009, 48, No. 4, 755–757, doi: 10.1002/anie.200803589

Roland Boese | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.structchem.uni-duisburg-essen.de/Dateien/Mitarbeiter/Boese/FR_Boese_en.htm

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>