Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking for the heartbeat of cellular networks

18.12.2009
Optical approach measures molecular kinetics in living cells

Our cells' molecules form an intricate network of interactions. Today's techniques, however, can only be used to measure individual molecular reactions outside the cells. Since molecular concentrations are much higher in cells than in the laboratory, scientists suspect that the kinetics of molecular reactions in living cells differ substantially from external probes.

„We expected the cellular reaction speed to be higher," confirms LMU biophysicist Professor Dieter Braun. "However, our novel optical approach showed that – depending on the length of the strands – the coupling of DNA-strands inside living cells can be both faster and slower than outside."

Data yielded from living cells are highly valuable for the development of models to understand the complex interactions as well as pathological processes in biological cells. Braun and his team now plan to probe a variety of molecular reactions in living cells, visualizing the heartbeat of cellular networks. (PNAS online, 14 November 2009)

In their work, the scientists investigated the hybridization – the coupling and de-coupling – of two DNA-strands, which they introduced into living cells. To determine the reaction time constant they used an infrared laser to induce temperature oscillations of different frequencies in the cell and measured the concentration of the reaction partners, namely of coupled and de-coupled DNA. At low frequencies, these concentrations followed the temperature oscillations, whereas at higher frequencies they experienced a phase delay and oscillated with diminished amplitude. Both delay time and amplitude decrease, were evaluated to obtain the reaction time constant.

The team determined the concentrations using the so-called fluorescent energy transfer (FRET), which takes place between two chromophores at a certain spatial distance. They applied a FRET pair to the DNA-strands such that energy transfer occurred only if the strands were coupled. The chromophores were excited with a stroboscopic lamp and a CCD camera registered time and amplitude of the fluorescence, thus visualizing the concentration alterations with a spatial resolution of about 500 nanometres. The experiments revealed that DNA-strands comprising 16 units, the so-called bases, showed a sevenfold higher reaction speed compared to values determined outside living cells.

12-base DNA-strands, on the other hand, reacted times five times slower than outside cells. This is a surprising result, since kinetics of molecular reactions has been assumed to be always faster inside cells, where much higher molecular concentrations prevail. "Apparently cells modulate the reaction speed in a highly selective way," says Braun. "The measurements provide valuable insight into in vivo kinetic data for the systematic analysis of the complexity of biological cells," adds Ingmar Schön, who conducted the demanding experiments. The scientists are now planning to probe a wide variety of molecular reactions in living cells, visualizing the heartbeat of cellular networks. (CR/suwe)

Publication:
"Hybridization Kinetics is Different Inside Cells"
Ingmar Schoen, Hubert Krammer, Dieter Braun
PNAS online, 14 November 2009
Contact:
Prof. Dieter Braun
Systems Biophysics, Center for NanoScience (CeNS) and Cluster of Excellence "Nanosystems Initiative Munich" (NIM), LMU Munich
Phone: +49 (0) 89 / 2180 – 2317
E-Mail: dieter.braun@lmu.de

Professor Dieter Braun | EurekAlert!
Further information:
http://www.lmu.de

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>