Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart repair with unfertilized oocytes

25.02.2013
First time worldwide: Research team at the University Medical Center Göttingen, Germany, grows heart repair tissue using stem cells from unfertilized oocytes.

The concept was first shown in mice and advantages were documented. Online publication in JOURNAL FOR CLINICAL INVESTIGATION on 22 February 2013.


Engineered heart muscle tissue from parthenogenetic heart muscle cells
Photo: umg

Faster, easier and more reliable – this is stem cell researcher Prof. Dr. Wolfram-Hubertus Zimmermann’s vision when thinking of heart repair with artificial cardiac cells or artificial cardiac tissue. Prof. Zimmermann, Director of the Department of Pharmacology at the University Medical Center Göttingen, Germany, and member of the Heart Research Center Göttingen (HRCG) and his team found a new and almost natural way of creating artificial heart-repair material.

The use of stem cells is indispensable for the clinical introduction of artificial cardiac tissue. The quest for Jack-of-all-trades cells is on. In Germany, researchers are looking particularly intensively into the potential of non-embryonic stem cells. Until recently, non-embryonic stem cells, which can be generated by unisexual reproduction or “virgin birth” (parthenogenesis) from unfertilized oocytes received little attention. These cells are called parthenogenetic stem cells (PS cells).

FIRST TIME WORLDWIDE
Researchers at the University Medical Center Göttingen (UMG), Germany, have now succeeded in growing heart tissue in the laboratory using stem cells generated from unfertilized murine oocytes. The heart tissue obtained, so-called Engineered Heart Muscle (EHM), beats spontaneously like natural heart tissue and can be used therapeutically in mice to repair heart attacks. These fundamental research results were published today, Friday, 22 February 2013, in the distinguished scientific JOURNAL FOR CLINICAL INVESTIGATION.

“We have shown for the first time that unfertilized oocytes are a promising starting material for the tissue engineering-based treatment of post-infarct heart failure” says Prof. Dr. Wolfram-Hubertus Zimmermann, senior author of the study: “What is important is that the method requires no embryos or genetic manipulations.”

Original publication: Michael Didié, Peter Christalla, Michael Rubart, Vijayakumar Muppala, Stephan Döker, Bernhard Unsöld, Thomas Rau, Thomas Eschenhagen, Alexander P Schwoerer, Heimo Ehmke, Udo Schumacher, Sigrid Fuchs, Claudia Lange, Alexander Becker, Tao Wen, John A Scherschel, Mark H Soonpaa, Tao Yang, Qiong Lin, Martin Zenke, Dong-Wook Han, Hans R. Schöler, Cornelia Ru-dolph, Doris Steinemann, Brigitte Schlegelberger, Steve Kattman, Alec Witty, Gor-don Keller, Loren J Field and Wolfram-Hubertus Zimmermann. Parthenogenetic Stem Cells for Tissue Engineered Heart Repair. J CLIN INVEST (2013) doi:10.1172/JCI66854.

RESULTS IN DETAIL: WHAT CAN PARTHENOGENETIC STEM CELLS DO?
In their work, the researchers scrutinized and documented the qualities and potentials of PS cells and produced the following results: PS cells share similar biologic properties with embryonic stem cells. PS cells are capable of generating functional heart muscle cells in the laboratory as well as in the body of mice. Moreover, PS cells can be used to produce engineered heart muscle in the laboratory. PS cells are immunologically simpler that other stem cells, which is very important for the broad application of engineered heart muscle for cardiac repair.
IMMUNOLOGICAL ADVANTAGE: FEWER REJECTIONS
„Our investigations have shown: Artificial heart tissue from parthenogenetic stem cells causes no or easier-to-control rejection reactions even after implantation into genetically unrelated recipients. “This is a clear advantage over other stem cells”, says Dr. Michael Didié, first author of the publication and member of the Depart-ment of Pharmacology and the Department of Cardiology and Pneumology at UMG. This effect is due to the fact that the genetic material in uniparental parthe-notes is less variable than in opposite-sex embryos.
TRANSFERABLE TO HUMANS?
Subsequent investigations alone can show if the new concept, now shown for the first time in mice, is transferable to humans. The team around Prof. Zimmermann wants to test the therapeutic potential of parthenogenesis for patients. To do so, unfertilized human oocytes are needed. In Germany alone, 60,000 unfertilized oocytes are discarded annually, because they are unsuitable for in vitro fertilization procedures, according to statistics from the German Society for Reproductive Medicine. Thus, no additional oocyte donations are required for Prof. Zimmer-mann’s planned work, as merely the existing oocytes that are no longer needed can be used.

“The road to clinical application in patients with heart failure is still long, and we need to ensure that patients are not exposed to intolerable risks”, says Prof. Zim-mermann. “On the other hand, cell-based tissue repair offers an exciting perspec-tive not only for the treatment of patients with heart failure but possibly also for the treatment of patients with other life-threatening diseases.”

Prof. Zimmermann envisions biobanks containing stem cell lines for therapeutic use. Model calculations permit the conclusion that 80 to 100 different PS cells would be sufficient to achieve tissue repair without the need for additional immune suppression in a population of an estimated 100 million.

UNISEXUAL REPRODUCTION (PARTHENOGENESIS)
Natural parthenogenesis is a form of unisexual reproduction that can be found occasionally in the animal world. Viable offspring develop from unfertilized oocytes. Mammals, including humans, have lost the capacity of parthenogenesis. However, using a pharmacologic trick, mammalian oocytes, too, can be activated partheno-genetically in the laboratory. To do so, unfertilized oocytes are stimulated with an electrical or chemical stimulus alone to divide. An embryo cannot develop. The developing parthenotes can be used to obtain pluripotent stem cells.

The Heart Research Center Göttingen (HRCG) was founded in 2010 from within the research focus “Heart Failure and Regeneration” at the University Medical Center Göttingen. Basic and clinical researchers are equally represented at the HRCG, which combines the collaborative efforts of the Heart Center Göttingen at the UMG, the Max Planck Institute (MPI) for Experimental Medicine, the MPI for Biophysical Chemistry, the MPI for Dynamics and Self-Organization and the German Primate Center (DPZ). The close collaboration between clinicians and basic researchers offers the unique opportunity to translate basic research results promptly into clinical practice. This objective is pursued by researchers of the HRCG as well as by partners at the German Center for Cardiovascular Research (Deutsches Zentrum für Herzkreislaufforschung, DZHK).

FURTHER INFORMATION
University Medical Center Göttingen, Georg-August-University Göttingen
Department of Pharmacology
Prof. Dr. Wolfram-Hubertus Zimmermann
Robert-Koch-Str. 40, 37075 Göttingen
Telefone +49 (0)551 / 39-5781
w.zimmermann@med.uni-goettingen.de
Department of Pharmacology: www.pharmacology.med.uni-goettingen.de
HRCG: www.herzzentrum-goettingen.de/de/content/forschung/551.html
DZHK: www.dzhk.de

Stefan Weller | idw
Further information:
http://www.med.uni-goettingen.de

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Fast, stretchy circuits could yield new wave of wearable electronics

30.05.2016 | Power and Electrical Engineering

Roadmap for better protection of Borneo’s cats and small carnivores

30.05.2016 | Ecology, The Environment and Conservation

Rosetta’s comet contains ingredients for life

30.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>