Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart repair with unfertilized oocytes

25.02.2013
First time worldwide: Research team at the University Medical Center Göttingen, Germany, grows heart repair tissue using stem cells from unfertilized oocytes.

The concept was first shown in mice and advantages were documented. Online publication in JOURNAL FOR CLINICAL INVESTIGATION on 22 February 2013.


Engineered heart muscle tissue from parthenogenetic heart muscle cells
Photo: umg

Faster, easier and more reliable – this is stem cell researcher Prof. Dr. Wolfram-Hubertus Zimmermann’s vision when thinking of heart repair with artificial cardiac cells or artificial cardiac tissue. Prof. Zimmermann, Director of the Department of Pharmacology at the University Medical Center Göttingen, Germany, and member of the Heart Research Center Göttingen (HRCG) and his team found a new and almost natural way of creating artificial heart-repair material.

The use of stem cells is indispensable for the clinical introduction of artificial cardiac tissue. The quest for Jack-of-all-trades cells is on. In Germany, researchers are looking particularly intensively into the potential of non-embryonic stem cells. Until recently, non-embryonic stem cells, which can be generated by unisexual reproduction or “virgin birth” (parthenogenesis) from unfertilized oocytes received little attention. These cells are called parthenogenetic stem cells (PS cells).

FIRST TIME WORLDWIDE
Researchers at the University Medical Center Göttingen (UMG), Germany, have now succeeded in growing heart tissue in the laboratory using stem cells generated from unfertilized murine oocytes. The heart tissue obtained, so-called Engineered Heart Muscle (EHM), beats spontaneously like natural heart tissue and can be used therapeutically in mice to repair heart attacks. These fundamental research results were published today, Friday, 22 February 2013, in the distinguished scientific JOURNAL FOR CLINICAL INVESTIGATION.

“We have shown for the first time that unfertilized oocytes are a promising starting material for the tissue engineering-based treatment of post-infarct heart failure” says Prof. Dr. Wolfram-Hubertus Zimmermann, senior author of the study: “What is important is that the method requires no embryos or genetic manipulations.”

Original publication: Michael Didié, Peter Christalla, Michael Rubart, Vijayakumar Muppala, Stephan Döker, Bernhard Unsöld, Thomas Rau, Thomas Eschenhagen, Alexander P Schwoerer, Heimo Ehmke, Udo Schumacher, Sigrid Fuchs, Claudia Lange, Alexander Becker, Tao Wen, John A Scherschel, Mark H Soonpaa, Tao Yang, Qiong Lin, Martin Zenke, Dong-Wook Han, Hans R. Schöler, Cornelia Ru-dolph, Doris Steinemann, Brigitte Schlegelberger, Steve Kattman, Alec Witty, Gor-don Keller, Loren J Field and Wolfram-Hubertus Zimmermann. Parthenogenetic Stem Cells for Tissue Engineered Heart Repair. J CLIN INVEST (2013) doi:10.1172/JCI66854.

RESULTS IN DETAIL: WHAT CAN PARTHENOGENETIC STEM CELLS DO?
In their work, the researchers scrutinized and documented the qualities and potentials of PS cells and produced the following results: PS cells share similar biologic properties with embryonic stem cells. PS cells are capable of generating functional heart muscle cells in the laboratory as well as in the body of mice. Moreover, PS cells can be used to produce engineered heart muscle in the laboratory. PS cells are immunologically simpler that other stem cells, which is very important for the broad application of engineered heart muscle for cardiac repair.
IMMUNOLOGICAL ADVANTAGE: FEWER REJECTIONS
„Our investigations have shown: Artificial heart tissue from parthenogenetic stem cells causes no or easier-to-control rejection reactions even after implantation into genetically unrelated recipients. “This is a clear advantage over other stem cells”, says Dr. Michael Didié, first author of the publication and member of the Depart-ment of Pharmacology and the Department of Cardiology and Pneumology at UMG. This effect is due to the fact that the genetic material in uniparental parthe-notes is less variable than in opposite-sex embryos.
TRANSFERABLE TO HUMANS?
Subsequent investigations alone can show if the new concept, now shown for the first time in mice, is transferable to humans. The team around Prof. Zimmermann wants to test the therapeutic potential of parthenogenesis for patients. To do so, unfertilized human oocytes are needed. In Germany alone, 60,000 unfertilized oocytes are discarded annually, because they are unsuitable for in vitro fertilization procedures, according to statistics from the German Society for Reproductive Medicine. Thus, no additional oocyte donations are required for Prof. Zimmer-mann’s planned work, as merely the existing oocytes that are no longer needed can be used.

“The road to clinical application in patients with heart failure is still long, and we need to ensure that patients are not exposed to intolerable risks”, says Prof. Zim-mermann. “On the other hand, cell-based tissue repair offers an exciting perspec-tive not only for the treatment of patients with heart failure but possibly also for the treatment of patients with other life-threatening diseases.”

Prof. Zimmermann envisions biobanks containing stem cell lines for therapeutic use. Model calculations permit the conclusion that 80 to 100 different PS cells would be sufficient to achieve tissue repair without the need for additional immune suppression in a population of an estimated 100 million.

UNISEXUAL REPRODUCTION (PARTHENOGENESIS)
Natural parthenogenesis is a form of unisexual reproduction that can be found occasionally in the animal world. Viable offspring develop from unfertilized oocytes. Mammals, including humans, have lost the capacity of parthenogenesis. However, using a pharmacologic trick, mammalian oocytes, too, can be activated partheno-genetically in the laboratory. To do so, unfertilized oocytes are stimulated with an electrical or chemical stimulus alone to divide. An embryo cannot develop. The developing parthenotes can be used to obtain pluripotent stem cells.

The Heart Research Center Göttingen (HRCG) was founded in 2010 from within the research focus “Heart Failure and Regeneration” at the University Medical Center Göttingen. Basic and clinical researchers are equally represented at the HRCG, which combines the collaborative efforts of the Heart Center Göttingen at the UMG, the Max Planck Institute (MPI) for Experimental Medicine, the MPI for Biophysical Chemistry, the MPI for Dynamics and Self-Organization and the German Primate Center (DPZ). The close collaboration between clinicians and basic researchers offers the unique opportunity to translate basic research results promptly into clinical practice. This objective is pursued by researchers of the HRCG as well as by partners at the German Center for Cardiovascular Research (Deutsches Zentrum für Herzkreislaufforschung, DZHK).

FURTHER INFORMATION
University Medical Center Göttingen, Georg-August-University Göttingen
Department of Pharmacology
Prof. Dr. Wolfram-Hubertus Zimmermann
Robert-Koch-Str. 40, 37075 Göttingen
Telefone +49 (0)551 / 39-5781
w.zimmermann@med.uni-goettingen.de
Department of Pharmacology: www.pharmacology.med.uni-goettingen.de
HRCG: www.herzzentrum-goettingen.de/de/content/forschung/551.html
DZHK: www.dzhk.de

Stefan Weller | idw
Further information:
http://www.med.uni-goettingen.de

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>