Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart repair with unfertilized oocytes

25.02.2013
First time worldwide: Research team at the University Medical Center Göttingen, Germany, grows heart repair tissue using stem cells from unfertilized oocytes.

The concept was first shown in mice and advantages were documented. Online publication in JOURNAL FOR CLINICAL INVESTIGATION on 22 February 2013.


Engineered heart muscle tissue from parthenogenetic heart muscle cells
Photo: umg

Faster, easier and more reliable – this is stem cell researcher Prof. Dr. Wolfram-Hubertus Zimmermann’s vision when thinking of heart repair with artificial cardiac cells or artificial cardiac tissue. Prof. Zimmermann, Director of the Department of Pharmacology at the University Medical Center Göttingen, Germany, and member of the Heart Research Center Göttingen (HRCG) and his team found a new and almost natural way of creating artificial heart-repair material.

The use of stem cells is indispensable for the clinical introduction of artificial cardiac tissue. The quest for Jack-of-all-trades cells is on. In Germany, researchers are looking particularly intensively into the potential of non-embryonic stem cells. Until recently, non-embryonic stem cells, which can be generated by unisexual reproduction or “virgin birth” (parthenogenesis) from unfertilized oocytes received little attention. These cells are called parthenogenetic stem cells (PS cells).

FIRST TIME WORLDWIDE
Researchers at the University Medical Center Göttingen (UMG), Germany, have now succeeded in growing heart tissue in the laboratory using stem cells generated from unfertilized murine oocytes. The heart tissue obtained, so-called Engineered Heart Muscle (EHM), beats spontaneously like natural heart tissue and can be used therapeutically in mice to repair heart attacks. These fundamental research results were published today, Friday, 22 February 2013, in the distinguished scientific JOURNAL FOR CLINICAL INVESTIGATION.

“We have shown for the first time that unfertilized oocytes are a promising starting material for the tissue engineering-based treatment of post-infarct heart failure” says Prof. Dr. Wolfram-Hubertus Zimmermann, senior author of the study: “What is important is that the method requires no embryos or genetic manipulations.”

Original publication: Michael Didié, Peter Christalla, Michael Rubart, Vijayakumar Muppala, Stephan Döker, Bernhard Unsöld, Thomas Rau, Thomas Eschenhagen, Alexander P Schwoerer, Heimo Ehmke, Udo Schumacher, Sigrid Fuchs, Claudia Lange, Alexander Becker, Tao Wen, John A Scherschel, Mark H Soonpaa, Tao Yang, Qiong Lin, Martin Zenke, Dong-Wook Han, Hans R. Schöler, Cornelia Ru-dolph, Doris Steinemann, Brigitte Schlegelberger, Steve Kattman, Alec Witty, Gor-don Keller, Loren J Field and Wolfram-Hubertus Zimmermann. Parthenogenetic Stem Cells for Tissue Engineered Heart Repair. J CLIN INVEST (2013) doi:10.1172/JCI66854.

RESULTS IN DETAIL: WHAT CAN PARTHENOGENETIC STEM CELLS DO?
In their work, the researchers scrutinized and documented the qualities and potentials of PS cells and produced the following results: PS cells share similar biologic properties with embryonic stem cells. PS cells are capable of generating functional heart muscle cells in the laboratory as well as in the body of mice. Moreover, PS cells can be used to produce engineered heart muscle in the laboratory. PS cells are immunologically simpler that other stem cells, which is very important for the broad application of engineered heart muscle for cardiac repair.
IMMUNOLOGICAL ADVANTAGE: FEWER REJECTIONS
„Our investigations have shown: Artificial heart tissue from parthenogenetic stem cells causes no or easier-to-control rejection reactions even after implantation into genetically unrelated recipients. “This is a clear advantage over other stem cells”, says Dr. Michael Didié, first author of the publication and member of the Depart-ment of Pharmacology and the Department of Cardiology and Pneumology at UMG. This effect is due to the fact that the genetic material in uniparental parthe-notes is less variable than in opposite-sex embryos.
TRANSFERABLE TO HUMANS?
Subsequent investigations alone can show if the new concept, now shown for the first time in mice, is transferable to humans. The team around Prof. Zimmermann wants to test the therapeutic potential of parthenogenesis for patients. To do so, unfertilized human oocytes are needed. In Germany alone, 60,000 unfertilized oocytes are discarded annually, because they are unsuitable for in vitro fertilization procedures, according to statistics from the German Society for Reproductive Medicine. Thus, no additional oocyte donations are required for Prof. Zimmer-mann’s planned work, as merely the existing oocytes that are no longer needed can be used.

“The road to clinical application in patients with heart failure is still long, and we need to ensure that patients are not exposed to intolerable risks”, says Prof. Zim-mermann. “On the other hand, cell-based tissue repair offers an exciting perspec-tive not only for the treatment of patients with heart failure but possibly also for the treatment of patients with other life-threatening diseases.”

Prof. Zimmermann envisions biobanks containing stem cell lines for therapeutic use. Model calculations permit the conclusion that 80 to 100 different PS cells would be sufficient to achieve tissue repair without the need for additional immune suppression in a population of an estimated 100 million.

UNISEXUAL REPRODUCTION (PARTHENOGENESIS)
Natural parthenogenesis is a form of unisexual reproduction that can be found occasionally in the animal world. Viable offspring develop from unfertilized oocytes. Mammals, including humans, have lost the capacity of parthenogenesis. However, using a pharmacologic trick, mammalian oocytes, too, can be activated partheno-genetically in the laboratory. To do so, unfertilized oocytes are stimulated with an electrical or chemical stimulus alone to divide. An embryo cannot develop. The developing parthenotes can be used to obtain pluripotent stem cells.

The Heart Research Center Göttingen (HRCG) was founded in 2010 from within the research focus “Heart Failure and Regeneration” at the University Medical Center Göttingen. Basic and clinical researchers are equally represented at the HRCG, which combines the collaborative efforts of the Heart Center Göttingen at the UMG, the Max Planck Institute (MPI) for Experimental Medicine, the MPI for Biophysical Chemistry, the MPI for Dynamics and Self-Organization and the German Primate Center (DPZ). The close collaboration between clinicians and basic researchers offers the unique opportunity to translate basic research results promptly into clinical practice. This objective is pursued by researchers of the HRCG as well as by partners at the German Center for Cardiovascular Research (Deutsches Zentrum für Herzkreislaufforschung, DZHK).

FURTHER INFORMATION
University Medical Center Göttingen, Georg-August-University Göttingen
Department of Pharmacology
Prof. Dr. Wolfram-Hubertus Zimmermann
Robert-Koch-Str. 40, 37075 Göttingen
Telefone +49 (0)551 / 39-5781
w.zimmermann@med.uni-goettingen.de
Department of Pharmacology: www.pharmacology.med.uni-goettingen.de
HRCG: www.herzzentrum-goettingen.de/de/content/forschung/551.html
DZHK: www.dzhk.de

Stefan Weller | idw
Further information:
http://www.med.uni-goettingen.de

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>