Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hearing restoration may be possible with cochlear repair after transplant of human cord blood cells

05.09.2008
According to an Italian research team publishing their findings in the current issue of Cell Transplantation (17:6), hearing loss due to cochlear damage may be repaired by transplantation of human umbilical cord hematopoietic stem cells (HSC) since they show that a small number migrated to the damaged cochlea and repaired sensory hair cells and neurons.

For their study, the team used animal models in which permanent hearing loss had been induced by intense noise, chemical toxicity or both. Cochlear regeneration was only observed in animal groups that received HSC transplants.

Researchers used sensitive tracing methods to determine if the transplanted cells were capable of migrating to the cochlea and evaluated whether the cells could contribute to regenerating neurons and sensory tissue in the cochlea.

"Our findings show dramatic repair of damage with surprisingly few human-derived cells having migrated to the cochlea," said Roberto P. Revoltella, MD, PhD, lead author of the study. "A fraction of circulating HSC fused with resident cells, generating hybrids, yet the administration of HSC appeared to be correlated with tissue regeneration and repair as the cochlea in non-transplanted mice remained seriously damaged."

Results also showed that cochlear regeneration was less in the transplanted group deafened by noise rather than chemicals, implying that damage was more severe when induced by noise. Regenerative effects were greater in mice injected with a higher number of HSC. They also found that regeneration of cochlear tissues improved as time passed.

According to Revoltella, their results suggest the possibility of an "emerging strategy for inner ear rehabilitation….providing conditions for the resumption of deafened cochlea."

"This study provides hope for a potential treatment for the repair of hearing impairments, particularly those arising as a consequence of cochlear damage," said David Eve, PhD, at the University of South Florida Health, and associate editor of Cell Transplantation.

Roberto P. Revoltella | EurekAlert!
Further information:
http://www.itb.cnr.it

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>