Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It Heals and Grows Together

12.01.2011
Polymer with amazing self-healing properties

Sooner or later, a cut to the skin or a broken bone will heal on its own; however, a scratch to a car’s paint or a tear in the wing of an airplane will not. Materials with self-healing properties could help extend the durability of products and make repairs easier.

Krzysztof Matyjaszewski and his co-workers at Carnegie Mellon University (Pittsburgh, USA) and Kyushu University (Japan) have now developed a polymer that can repair itself when irradiated with UV light—over and over again. As the scientists report in the journal Angewandte Chemie, this is the first material in which capped covalent bonds repeatedly reattach, even allowing fully separated pieces to be fused back together.

Some previous solid self-healing materials contain tiny capsules that tear open to release a chemical agent when the material is damaged and have been able to repair themselves only one time. Other materials, including some gels, can repair themselves repeatedly but lack the covalent bonds that increase materials strength and stability.

In contrast, the new polymeric material produced by the American and Japanese team is stable and repairs itself again and again. The secret to their success is that the polymer is cross-linked through trithiocarbonate units. These are carbon atoms bonded to three sulfur atoms, two of which use their second bonding position to attach to another carbon atom. These groups have a special property: they can restructure under UV light. The light breaks one carbon–sulfur bond in the trithiocarbonate groups. This produces two radicals—molecules with a free, unpaired electron. The radicals are very reactive and attack other trithiocarbonate groups to form new carbon–sulfur bonds while breaking others to form more free radicals. The chain reaction stops when two radicals react with each other.

The researchers were able to heal cut polymer fragments with irradiation—either immersed in liquid or in bulk. They only had to firmly press the cut edges together and irradiate them. The edges grew back together by means of the radical re-organization process described above.

The self-healing effect goes much further: even shredded polymer samples could simply be pressed together and irradiated to be fused into a continuous piece. The resulting object was in the shape of the cylindrical tube in which the procedure was carried out. This self-healing process can be carried out repeatedly on the same sample. The material is thus also interesting as a new recyclable product.

Author: Krzysztof Matyjaszewski, Carnegie Mellon University, Pittsburgh (USA), http://www.cmu.edu/maty/index.html

Title: Repeatable Photoinduced Self-Healing of Covalently Cross-Linked Polymers through Reshuffling of Trithiocarbonate Units

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201003888

Krzysztof Matyjaszewski | GDCh
Further information:
http://pressroom.angewandte.org
http://www.cmu.edu/maty/index.html

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>