Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harmless soil-dwelling bacteria successfully kill cancer

05.09.2011
A bacterial strain that specifically targets tumours could soon be used as a vehicle to deliver drugs in frontline cancer therapy. The strain is expected to be tested in cancer patients in 2013 says a scientist at the Society for General Microbiology's Autumn Conference at the University of York.

The therapy uses Clostridium sporogenes – a bacterium that is widespread in the soil. Spores of the bacterium are injected into patients and only grow in solid tumours, where a specific bacterial enzyme is produced. An anti-cancer drug is injected separately into the patient in an inactive 'pro-drug' form. When the pro-drug reaches the site of the tumour, the bacterial enzyme activates the drug, allowing it to destroy only the cells in its vicinity – the tumour cells.

Researchers at the University of Nottingham and the University of Maastricht have now overcome the hurdles that have so far prevented this therapy from entering clinical trials. They have introduced a gene for a much-improved version of the enzyme into the C. sporogenes DNA. The improved enzyme can now be produced in far greater quantities in the tumour than previous versions, and is more efficient at converting the pro-drug into its active form.

A fundamental requirement for any new cancer therapy is the ability to target cancer cells while excluding healthy cells. Professor Nigel Minton, who is leading the research, explains how this therapy naturally fulfils this need. "Clostridia are an ancient group of bacteria that evolved on the planet before it had an oxygen-rich atmosphere and so they thrive in low oxygen conditions. When Clostridia spores are injected into a cancer patient, they will only grow in oxygen-depleted environments, i.e. the centre of solid tumours. This is a totally natural phenomenon, which requires no fundamental alterations and is exquisitely specific. We can exploit this specificity to kill tumour cells but leave healthy tissue unscathed," he said.

... more about:
»Harmless »healthy cell »tumour cells

The research may ultimately lead to a simple and safe procedure for curing a wide range of solid tumours. "This therapy will kill all types of tumour cell. The treatment is superior to a surgical procedure, especially for patients at high risk or with difficult tumour locations," explained Professor Minton.

"We anticipate that the strain we have developed will be used in a clinical trial in 2013 led by Jan Theys and Philippe Lambin at the University of Maastricht in The Netherlands. A successful outcome could lead to its adoption as a frontline therapy for treating solid tumours. If the approach is successfully combined with more traditional approaches this could increase our chance of winning the battle against cancerous tumours."

Laura Udakis | EurekAlert!
Further information:
http://www.sgm.ac.uk

Further reports about: Harmless healthy cell tumour cells

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>