Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Haptoglobin as an early serum biomarker of virus-induced type 1 diabetes in rats

27.10.2010
Type 1 diabetes (T1D), formerly known as juvenile diabetes, is a multifactorial disease of complex etiology characterized by the autoimmune destruction of pancreatic beta cells.

In addition to genetic susceptibility, it is generally accepted that environmental factors play important roles in triggering disease, with virus infection having perhaps the strongest association.

Multiple viral infections including cytomegalovirus, mumps, rubella, enteroviruses, and parvovirus have all been associated with human T1D. Indeed, the effects of diverse viruses in triggering T1D may explain the heterogeneous nature of disease onset and kinetics in the general population.

The recent availability of novel immunomodulatory therapies that may preserve residual beta cell mass in new onset diabetics has generated a demand for noninvasive testable biomarkers that can identify the development of the autoreactive process before it becomes clinically apparent.

In the work published in the November issue of Experimental Biology and Medicine, Kruger and coworkers have utilized several well-established rat models of virus-induced T1D to search for serum biomarkers that occur early in disease development. Annie Kruger, working together with Rita Bortell and other colleagues at the University of Massachusetts Medical School, carried out the work. Dr. Kruger, a recent MD/PhD graduate, investigated the viral induction of autoimmune diabetes as part of her PhD thesis.

In a proteomics study of serum from rats treated with diabetogenic virus, the research team utilized 2D gel analysis and mass spectrometry and found increased levels of serum haptoglobin very early in the time course of diabetes induction. This result was confirmed by western and ELISA analyses, and sustained elevations of serum haptoglobin were generally predictive of ensuing diabetes. "Intriguingly," Dr. Bortell stated, "mutations in the human haptoglobin gene are associated with increased risk of diabetic complications such as retinopathy, nephropathy and cardiovascular disease. In our rat studies, however, haptoglobin was identified very early following virus infection, well prior to the development of diabetes or its complications, and thus may represent a biomarker for the pathogenesis of autoimmune diabetes as well."

To the researchers' knowledge, this is the first study that investigates T1D serum biomarkers found specifically in response to virus infection. Dr. Bortell said "As virus infections have historically been associated with the development of T1D in children, these rat models have particular relevance to the human disease. Reliably identifying children in the earliest phases of diabetes (pre-diabetes) would provide clinicians with a window of opportunity when pharmacotherapy could be most effective in slowing or halting the disease."

Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "Kruger et al have identified haptoglobin as an early serum biomarker predictive of virus-induced T1D utilizing well-known rat models. This discovery, in conjunction with established markers of genetic susceptibility, should prove useful in identifying those children at risk for T1D."

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903.

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.rsmjournals.com/.

Dr. Rita Bortell | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>