Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hair regeneration from adult stem cells

18.04.2012
Research group headed by Professor Takashi Tsuji demonstrates regenerating “functional hair regeneration from adult stem cells” Substantial advance in the development of next-generation of “organ replacement regenerative therapies”

Organ replacement regenerative therapy is purported to enable the replacement of organs damaged by disease, injury or ageing in the foreseeable future.

A research group led by Professor Takashi Tsuji (Professor in the Research Institute for Science and Technology, Tokyo University of Science, and Director of Organ Technologies Inc.) has provided a proof-of-concept for bioengineered organ replacement as a next stage of regenerative therapy.

Reporting in Nature Communications the group demonstrate that bioengineered hair follicle germ reconstructed from adult epithelial stem cells and dermal papilla cells can regenerate fully functional hair follicle and hair growth. Their bioengineered follicles showed restored hair cycles and piloerection through the rearrangement of follicular stem cells and their niches.
The bioengineered hair follicle also developed the correct structures and formed proper connections with surrounding host tissues such as the epidermis, arrector pili muscle and nerve fibers. This study thus reveals the potential applications of adult tissue-derived follicular stem cells as a bioengineered organ replacement therapy.

This was collaborative research with Lecturer Tarou Irié and Professor emertius Tetsuhiko Tachikawa (Department of Oral Pathology, Showa University School of Dentistry, Japan), Professor Akio Sato (Department Regenerative Medicine, Plastic and Reconstructive Surgery, Kitasato University School of Medicine, Japan) and Associate Professor Akira Takeda (Department of Plastic and Aesthetic Surgery, Kitasato University School of Medicine, Japan).

| Research asia research news
Further information:
http://www.sut.ac.jp/en/
http://issuu.com/asiaresearchnews/docs/press_release_ncomms_doi_10.1038-ncomms1784-2

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>