Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gulf currents primed bacteria to degrade oil spill

23.05.2011
A new computer model of the Gulf of Mexico in the period after the oil spill provides insights into how underwater currents may have primed marine microorganisms to degrade the oil.

"It is called dynamic auto-inoculation. Parcels of water move over the ruptured well, picking up hydrocarbons. When these parcels come back around and cross back over the well, the bacteria have already been activated, are more abundant than before, and degrade hydrocarbons far more quickly," says David Valentine of the University of California, Santa Barbara, speaking today at the 111th General Meeting of the American Society for Microbiology.

Valentine has been studying microbial communities and the fate of chemicals 4000 feet below the surface from the Deepwater Horizon oil spill since June of 2010. Valentine and his colleagues at UC Santa Barbara, the University of Rijeka in Croatia, and the Naval Research Laboratory recently developed a computer simulation by coupling the Naval Research Laboratory's physical oceanographic model with their own discoveries and knowledge of the microbes responsible for breaking down the chemicals.

"We took the physical model of the deep Gulf of Mexico, added the hydrocarbons and bacteria, set reasonable guidelines for metabolism, and let them eat starting at day 1 of the spill," says Valentine.

To confirm that the model was providing them with an accurate picture of what had happened they compared the model to spot measurements they and others had previously made in the Gulf.

"The model predicts the kinds of distributions observed at different times and locations. The assumptions that went into the model appear to be reasonable," says Valentine.

The most interesting observation they found using the model was dynamic auto-inoculation. Many parcels of water circulated in and out of the source area. Each iteration allowed the bacterial populations to increase in number and degrade the chemicals more rapidly.

"The more recirculation you have, the more quickly the hydrocarbons will be consumed," says Valentine. "We have developed a model that combines the large-scale movement of the water with the metabolism of the microbes. From that we are observing a phenomenon that molded the distribution of the bacteria over time and space, and that are consistent with real-world observations in the Gulf of Mexico."

A live interview with David Valentine will be webcast Sunday, May 22, 2011 at 12:00 noon CDT, over the ASM Live uStream channel (http://www.ustream.tv/channel/asm-live). Questions will be taken from the audience via chat room and Twitter.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>