Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gulf currents primed bacteria to degrade oil spill

23.05.2011
A new computer model of the Gulf of Mexico in the period after the oil spill provides insights into how underwater currents may have primed marine microorganisms to degrade the oil.

"It is called dynamic auto-inoculation. Parcels of water move over the ruptured well, picking up hydrocarbons. When these parcels come back around and cross back over the well, the bacteria have already been activated, are more abundant than before, and degrade hydrocarbons far more quickly," says David Valentine of the University of California, Santa Barbara, speaking today at the 111th General Meeting of the American Society for Microbiology.

Valentine has been studying microbial communities and the fate of chemicals 4000 feet below the surface from the Deepwater Horizon oil spill since June of 2010. Valentine and his colleagues at UC Santa Barbara, the University of Rijeka in Croatia, and the Naval Research Laboratory recently developed a computer simulation by coupling the Naval Research Laboratory's physical oceanographic model with their own discoveries and knowledge of the microbes responsible for breaking down the chemicals.

"We took the physical model of the deep Gulf of Mexico, added the hydrocarbons and bacteria, set reasonable guidelines for metabolism, and let them eat starting at day 1 of the spill," says Valentine.

To confirm that the model was providing them with an accurate picture of what had happened they compared the model to spot measurements they and others had previously made in the Gulf.

"The model predicts the kinds of distributions observed at different times and locations. The assumptions that went into the model appear to be reasonable," says Valentine.

The most interesting observation they found using the model was dynamic auto-inoculation. Many parcels of water circulated in and out of the source area. Each iteration allowed the bacterial populations to increase in number and degrade the chemicals more rapidly.

"The more recirculation you have, the more quickly the hydrocarbons will be consumed," says Valentine. "We have developed a model that combines the large-scale movement of the water with the metabolism of the microbes. From that we are observing a phenomenon that molded the distribution of the bacteria over time and space, and that are consistent with real-world observations in the Gulf of Mexico."

A live interview with David Valentine will be webcast Sunday, May 22, 2011 at 12:00 noon CDT, over the ASM Live uStream channel (http://www.ustream.tv/channel/asm-live). Questions will be taken from the audience via chat room and Twitter.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>