Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gulf currents primed bacteria to degrade oil spill

23.05.2011
A new computer model of the Gulf of Mexico in the period after the oil spill provides insights into how underwater currents may have primed marine microorganisms to degrade the oil.

"It is called dynamic auto-inoculation. Parcels of water move over the ruptured well, picking up hydrocarbons. When these parcels come back around and cross back over the well, the bacteria have already been activated, are more abundant than before, and degrade hydrocarbons far more quickly," says David Valentine of the University of California, Santa Barbara, speaking today at the 111th General Meeting of the American Society for Microbiology.

Valentine has been studying microbial communities and the fate of chemicals 4000 feet below the surface from the Deepwater Horizon oil spill since June of 2010. Valentine and his colleagues at UC Santa Barbara, the University of Rijeka in Croatia, and the Naval Research Laboratory recently developed a computer simulation by coupling the Naval Research Laboratory's physical oceanographic model with their own discoveries and knowledge of the microbes responsible for breaking down the chemicals.

"We took the physical model of the deep Gulf of Mexico, added the hydrocarbons and bacteria, set reasonable guidelines for metabolism, and let them eat starting at day 1 of the spill," says Valentine.

To confirm that the model was providing them with an accurate picture of what had happened they compared the model to spot measurements they and others had previously made in the Gulf.

"The model predicts the kinds of distributions observed at different times and locations. The assumptions that went into the model appear to be reasonable," says Valentine.

The most interesting observation they found using the model was dynamic auto-inoculation. Many parcels of water circulated in and out of the source area. Each iteration allowed the bacterial populations to increase in number and degrade the chemicals more rapidly.

"The more recirculation you have, the more quickly the hydrocarbons will be consumed," says Valentine. "We have developed a model that combines the large-scale movement of the water with the metabolism of the microbes. From that we are observing a phenomenon that molded the distribution of the bacteria over time and space, and that are consistent with real-world observations in the Gulf of Mexico."

A live interview with David Valentine will be webcast Sunday, May 22, 2011 at 12:00 noon CDT, over the ASM Live uStream channel (http://www.ustream.tv/channel/asm-live). Questions will be taken from the audience via chat room and Twitter.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>