Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gulf currents primed bacteria to degrade oil spill

23.05.2011
A new computer model of the Gulf of Mexico in the period after the oil spill provides insights into how underwater currents may have primed marine microorganisms to degrade the oil.

"It is called dynamic auto-inoculation. Parcels of water move over the ruptured well, picking up hydrocarbons. When these parcels come back around and cross back over the well, the bacteria have already been activated, are more abundant than before, and degrade hydrocarbons far more quickly," says David Valentine of the University of California, Santa Barbara, speaking today at the 111th General Meeting of the American Society for Microbiology.

Valentine has been studying microbial communities and the fate of chemicals 4000 feet below the surface from the Deepwater Horizon oil spill since June of 2010. Valentine and his colleagues at UC Santa Barbara, the University of Rijeka in Croatia, and the Naval Research Laboratory recently developed a computer simulation by coupling the Naval Research Laboratory's physical oceanographic model with their own discoveries and knowledge of the microbes responsible for breaking down the chemicals.

"We took the physical model of the deep Gulf of Mexico, added the hydrocarbons and bacteria, set reasonable guidelines for metabolism, and let them eat starting at day 1 of the spill," says Valentine.

To confirm that the model was providing them with an accurate picture of what had happened they compared the model to spot measurements they and others had previously made in the Gulf.

"The model predicts the kinds of distributions observed at different times and locations. The assumptions that went into the model appear to be reasonable," says Valentine.

The most interesting observation they found using the model was dynamic auto-inoculation. Many parcels of water circulated in and out of the source area. Each iteration allowed the bacterial populations to increase in number and degrade the chemicals more rapidly.

"The more recirculation you have, the more quickly the hydrocarbons will be consumed," says Valentine. "We have developed a model that combines the large-scale movement of the water with the metabolism of the microbes. From that we are observing a phenomenon that molded the distribution of the bacteria over time and space, and that are consistent with real-world observations in the Gulf of Mexico."

A live interview with David Valentine will be webcast Sunday, May 22, 2011 at 12:00 noon CDT, over the ASM Live uStream channel (http://www.ustream.tv/channel/asm-live). Questions will be taken from the audience via chat room and Twitter.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>