Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The great pond experiment: Regional vs. local biodiversity

28.05.2010
Seven-year experiment shows that pond communities bear a lasting imprint of random events in their past

Scientist Jon Chase once worked in a lab that set up small pond ecosystems for experiments on species interactions and food webs.

"We would try to duplicate pond communities with a given experimental treatment," he says.

"We put 10 of this species in each pond, and five of these species, and eight of the other species, and 15 milliliters of this nutrient and 5 grams of that and 'sproing,' every replicate would do its own thing and nothing would be like anything else.

"That made me curious. What if, instead of trying to eliminate the messiness, I tried to figure out where it was coming from?"

The results of that investigation are published online this week in Science Express. A seven-year experiment isolated one reason experimental ponds go wild: history.

If a pond has enough nutrients, the pond community that emerges depends on the order in which species were introduced, says Chase, an ecologist at Washington University in St. Louis.

The discovery has broad implications for highly productive ecosystems such as tropical rainforests and coral reefs, and for attempts to restore these ecosystems.

Restoration can fail if the original ecosystem bears the imprint or memory of its past in ways that are not understood.

"This study is an important experimental confirmation of the influence of primary productivity on regional biodiversity," says Alan Tessier, program director in the National Science Foundation (NSF)'s Division of Environmental Biology, which funded the research.

"The findings have broader relevance to the protection and restoration of biodiversity."

In the summer of 2002, Chase embarked on the long-term pond experiment at the Tyson Research Center, a 2,000-acre field station on the outskirts of St. Louis, and owned by Washington University.

He set out 45 cattle tanks in an old field, added dirt to each and filled them with well water.

The 300-gallon tanks are not as big as regular ponds, he says, but they're "decent-sized. I've even had herons try to fish in them, although they're a bit small for that."

He dosed the ponds with nutrients in the form of nitrogen- or phosphorus-containing chemicals. Each pond received low, medium or high levels of nutrients throughout the experiment.

Then he began adding species to the ponds. The species consisted of zooplankton; insects and small invertebrates such as snails; vascular aquatic plants; and filamentous green algae.

The first year, each pond had a randomly selected one-third of the species added. The following year, half the remaining species, again randomly selected, were added.

In the third year, the pond got a soup containing the remaining species.

Each pond received species in a different order but in the end, every pond got exactly the same species.

"Then we let nature take over," Chase says. "The plankton moved around in the wind and on frogs' backs, dragonflies flitted over and laid their eggs, beetles buzzed by, and it was a 'big happy wetland community.'"

Chase and a team of students sampled the ponds each summer to see how the communities were faring.

The low-productivity ponds all looked the same. But that was not the case for the high productivity ponds.

"The low productivity ponds were very predictable," he says. "The high productivity ponds were more stochastic [random]. Their history mattered more."

There were no big differences among the ponds when it came to number of species. The low productivity ones had roughly as many species as the high productivity ponds.

The biodiversity arose at a different scale, not within a pond but within a group of high-productivity ponds.

This kind of diversity is called beta diversity to distinguish it from local, or alpha diversity.

It directs our attention, Chase says, to ecosystem structure that emerges only at a certain scale. Beta diversity may emerge clearly only if we look regionally rather than locally.

Restorationists say ecology is plagued by the myth of the carbon copy, the idea that we can easily make an identical copy of an ecosystem because community assembly is predictable and always ends up in the same place.

Degrading an ecosystem resets it to an earlier stage, it was thought, from which it will develop in a predictable fashion to an end point.

But experience shows that replacement ecosystems often fall short of the original ones.

Chase's pond experiment suggests why.

Far from being carbon copies, ecosystems are historical artifacts, their final form a sensitive record of their past.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>