Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Great expectations

When will artificial molecular machines start working for us?

Physicist Richard Feynman in his famous 1959 talk, "Plenty of Room at the Bottom," described the precise control at the atomic level promised by molecular machines of the future. More than 50 years later, synthetic molecular switches are a dime a dozen, but synthetically designed molecular machines are few and far between.

Northwestern University chemists recently teamed up with a University of Maine physicist to explore the question, "Can artificial molecular machines deliver on their promise?" Their provocative analysis provides a roadmap outlining future challenges that must be met before full realization of the extraordinary promise of synthetic molecular machines can be achieved.

The tutorial review will be published Nov. 25 by the journal Chemical Society Reviews.

The senior authors are Sir Fraser Stoddart, Board of Trustees Professor of Chemistry, and Bartosz A. Grzybowski, the K. Burgess Professor of Physical Chemistry, both in Northwestern's Weinberg College of Arts and Sciences, and Dean Astumian, professor of physics at the University of Maine. (Grzybowski is also professor of chemical and biological engineering in the McCormick School of Engineering and Applied Science.)

One might ask, what is the difference between a switch and a machine at the level of a molecule? It all comes down to the molecule doing work.

"A simplistic analogy of an artificial molecular switch is the piston in a car engine while idling," explains Ali Coskun, lead author of the paper and a postdoctoral fellow in Stoddart's laboratory. "The piston continually switches between up and down, but the car doesn't go anywhere. Until the pistons are connected to a crankshaft that, in turn, makes the car's wheels turn, the switching of the pistons only wastes energy without doing useful work."

Astumian points out that this analogy only takes us part of the way to understanding molecular machines. "All nanometer-scale machines are subject to continual bombardment by the molecules in their environment giving rise to what is called 'thermal noise,'" he cautions. "Attempts to mimic macroscopic approaches to achieve precisely controlled machines by minimizing the effects of thermal noise have not been notably successful."

Scientists currently are focused on a chemical approach where thermal noise is exploited for constructive purposes. Thermal "activation" is almost certainly at the heart of the mechanisms by which biomolecular machines in our cells carry out the essential tasks of metabolism. "At the nanometer scale of single molecules, harnessing energy is as much about preventing unwanted, backward motion as it is about causing forward motion," Astumian says.

In order to fulfill their great promise, artificial molecular machines need to operate at all scales. A single molecular switch interfaced to its environment can do useful work only on its own tiny scale, perhaps by assembling small molecules into chemical products of great complexity. But what about performing tasks in the macroscopic world?

To achieve this goal, "there is a need to organize the molecular switches spatially and temporally, just as in nature," Stoddart explains. He suggests that "metal-organic frameworks may hold the key to this particular challenge on account of their robust yet highly integrated architectures."

What is really encouraging is the remarkable energy-conversion efficiency of artificial molecular machines to perform useful work that can be greater than 75 percent. This efficiency is quite spectacular when compared to the efficiency of typical car engines, which convert only 20 to 30 percent of the chemical energy of gasoline into mechanical work, or even of the most efficient diesel engines with efficiencies of 50 percent.

"The reason for this high efficiency is that chemical energy can be converted directly into mechanical work, without having to be first converted into heat," Grzybowski says. "The possible uses of artificial molecular machines raise expectations expressed in the fact that the first person to create a nanoscale robotic arm, which shows precise positional control of matter at the nanoscale, can claim Feynman's Grand Prize of $250,000."

The title of the paper is "Great Expectations: Can Artificial Molecular Machines Deliver on Their Promise?" In addition to Stoddart, Grzybowski, Coskun and Astumian, the other co-author of the paper is Michal Banaszak from Adam Mickiewicz University, Poland.

Contact: Megan Fellman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>