Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less is more – Grasshoppers detect species-specific songs with few cells

12.08.2011
Our senses are constantly flooded with stimuli. In order to distinguish important from unimportant information, our senses already provide a valuable preprocessing step for the brain. Even just a few cells suffice in order to process complex stimuli, as scientists from the Bernstein Center Berlin and the Humboldt Universität zu Berlin showed in the journal PNAS.

They investigated how the auditory system of grasshoppers recognizes species-specific courtship songs and found that only three cellular interconnections are needed for song identification. Furthermore, it does not matter that the signals transduced to the brain are far less precise than the input signals.


The ears of grasshoppers are located in the abdomen; neurons that are also important for sound processing are in the thorax region. Only highly filtered information reaches the brain. © Sandra Wohlgemuth

Millions of stimuli affect us, but only a fraction of these is important to us. The stimuli are filtered by the sensory organs and preprocessed so that our brain is able to track what is important without becoming overwhelmed. The retina, for instance, does not only send single pixel information to the brain, but also information about movements and edges. For this purpose, a large network of thousands of cells is necessary. However, in many animals the neuronal networks of the sensory organs are much more simply constructed. Researchers led by Prof. Bernhard Ronacher, Prof. Susanne Schreiber and Dr. Sandra Wohlgemuth of the Bernstein Center and the Humboldt Universität in Berlin wondered how efficiently simple networks can perform the preprocessing of complex stimuli.

Therefore, they examined the auditory system of grasshoppers, which is important for the recognition of species-specific courtship songs. The studied neurons are found in the thoracic ganglia of the animals. The researchers discovered to their surprise that after three cellular processing steps the information was already heavily modified, and, above all, temporally inaccurate. However, the neuronal signals that were transmitted to the brain contained the essential information about song features.

The courtship songs of different grasshopper species are characterized by alternating sounds and pauses. The activity of the sensory cells that sit in the ear on the abdomen of the animals was precisely temporally coupled with the incoming stimulus patterns. This allows the animals a very accurate classification of the patterns of courtship songs. But already the following cells showed a specific pattern of activity that forwarded only a fraction of the information. “At the beginning, we were very surprised that the network destroys that important precision,” says first author Jan Clemens. However, their analysis shows the reason for the change in signals. “While at the beginning of processing, most information lies in the precise timing of neuronal signals, the output signals are rather a yes-no answer,” says group leader Susanne Schreiber. Thus, many details are lost on the way to the grasshoppers’ brain, but the essential content about song features is much more readily available to the animal.

Thus, this small network also matches the prediction that information processing should be highly efficient in nervous systems in order to survive in evolution. For the next step, the scientists in Berlin aim to rebuild this neuronal network on the computer in order to understand such important data processing more thoroughly.

The Bernstein Center Berlin is part of the National Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. It was named in honor of the German physiologist Julius Bernstein (1835–1917).

Original publication:
Clemens J, Kutzki O, Ronacher B, Schreiber S*, Wohlgemuth S* (2011): Efficient transformation of an auditory population code in a small sensory system, PNAS doi:10.1073/pnas.1104506108, *equal contribution

http://www.pnas.org/content/early/2011/08/03/1104506108.abstract

Contact person:
Professor Dr. Susanne Schreiber
s.schreiber@hu-berlin.de
Institute for Theoretical Biology
Humboldt-Universität zu Berlin
Invalidenstr. 43
10115 Berlin
Phone: ++49-30-2093 8652
Jan Clemens
clemensjan@gmail.com
Institute for Biology / Behavioral Physiology Group
Humboldt-Universität zu Berlin
Invalidenstraße 43
10115 Berlin
Phone: ++49-30-2093-8777

Johannes Faber | idw
Further information:
http://www.bccn-berlin.de/
http://www.nncn.de/
http://www.hu-berlin.de/

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>