Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less is more – Grasshoppers detect species-specific songs with few cells

12.08.2011
Our senses are constantly flooded with stimuli. In order to distinguish important from unimportant information, our senses already provide a valuable preprocessing step for the brain. Even just a few cells suffice in order to process complex stimuli, as scientists from the Bernstein Center Berlin and the Humboldt Universität zu Berlin showed in the journal PNAS.

They investigated how the auditory system of grasshoppers recognizes species-specific courtship songs and found that only three cellular interconnections are needed for song identification. Furthermore, it does not matter that the signals transduced to the brain are far less precise than the input signals.


The ears of grasshoppers are located in the abdomen; neurons that are also important for sound processing are in the thorax region. Only highly filtered information reaches the brain. © Sandra Wohlgemuth

Millions of stimuli affect us, but only a fraction of these is important to us. The stimuli are filtered by the sensory organs and preprocessed so that our brain is able to track what is important without becoming overwhelmed. The retina, for instance, does not only send single pixel information to the brain, but also information about movements and edges. For this purpose, a large network of thousands of cells is necessary. However, in many animals the neuronal networks of the sensory organs are much more simply constructed. Researchers led by Prof. Bernhard Ronacher, Prof. Susanne Schreiber and Dr. Sandra Wohlgemuth of the Bernstein Center and the Humboldt Universität in Berlin wondered how efficiently simple networks can perform the preprocessing of complex stimuli.

Therefore, they examined the auditory system of grasshoppers, which is important for the recognition of species-specific courtship songs. The studied neurons are found in the thoracic ganglia of the animals. The researchers discovered to their surprise that after three cellular processing steps the information was already heavily modified, and, above all, temporally inaccurate. However, the neuronal signals that were transmitted to the brain contained the essential information about song features.

The courtship songs of different grasshopper species are characterized by alternating sounds and pauses. The activity of the sensory cells that sit in the ear on the abdomen of the animals was precisely temporally coupled with the incoming stimulus patterns. This allows the animals a very accurate classification of the patterns of courtship songs. But already the following cells showed a specific pattern of activity that forwarded only a fraction of the information. “At the beginning, we were very surprised that the network destroys that important precision,” says first author Jan Clemens. However, their analysis shows the reason for the change in signals. “While at the beginning of processing, most information lies in the precise timing of neuronal signals, the output signals are rather a yes-no answer,” says group leader Susanne Schreiber. Thus, many details are lost on the way to the grasshoppers’ brain, but the essential content about song features is much more readily available to the animal.

Thus, this small network also matches the prediction that information processing should be highly efficient in nervous systems in order to survive in evolution. For the next step, the scientists in Berlin aim to rebuild this neuronal network on the computer in order to understand such important data processing more thoroughly.

The Bernstein Center Berlin is part of the National Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. It was named in honor of the German physiologist Julius Bernstein (1835–1917).

Original publication:
Clemens J, Kutzki O, Ronacher B, Schreiber S*, Wohlgemuth S* (2011): Efficient transformation of an auditory population code in a small sensory system, PNAS doi:10.1073/pnas.1104506108, *equal contribution

http://www.pnas.org/content/early/2011/08/03/1104506108.abstract

Contact person:
Professor Dr. Susanne Schreiber
s.schreiber@hu-berlin.de
Institute for Theoretical Biology
Humboldt-Universität zu Berlin
Invalidenstr. 43
10115 Berlin
Phone: ++49-30-2093 8652
Jan Clemens
clemensjan@gmail.com
Institute for Biology / Behavioral Physiology Group
Humboldt-Universität zu Berlin
Invalidenstraße 43
10115 Berlin
Phone: ++49-30-2093-8777

Johannes Faber | idw
Further information:
http://www.bccn-berlin.de/
http://www.nncn.de/
http://www.hu-berlin.de/

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>