Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using GPS to Map Bat Teeth, Explore Diet Adaptations

17.02.2011
In a clever use of GPS technology, biologists at the University of Massachusetts Amherst have “mapped” the topography of bat teeth as if they were uncharted mountain ranges, in order to better understand how toothy ridges, peaks and valleys have evolved to allow different species to eat everything from hard-shelled insects to blood and nectar.

Using a method based on geographic positioning systems that allowed them to characterize the topography of the bats’ molars in a way similar to how geographers characterize mountain surfaces, the researchers calculated a measure of dental complexity that reflects how “rugged” the surface of the tooth is. They illustrate a trend from relative simplicity of the shearing molars in insect eaters and omnivores to high complexity of the crushing molars in fruit eaters.

Working with field-collected bat skulls, researchers Sharlene Santana and Betsy Dumont of UMass Amherst, with Suzanne Strait of Marshall University, W. Va., compared the structure of molars across 17 species of the New World leaf-nosed bats that specialize in a variety of different diets (insects, fruits, and a combination). It’s well known that mammalian tooth structure and function are strongly related to diet, but this study goes further, the authors explain, to directly measure trends in the relationships among diet, tooth structure, feeding performance and feeding behavior.

They found that the molars of fruit-eating species had sharp outer edges that likely allow them to pierce tough fruit skin and pulp, plus large surfaces with tiny indentations that may help them grind fruit pulp efficiently. By contrast, the molars of insect-eating species were less complex, possibly because of their smoother shearing surfaces. The more simply-shaped teeth would presumably be good for cutting through hard insect exoskeleton. This study is published in the Feb. 16 online issue of the journal Functional Ecology.

Santana and colleagues further tested if, within insect-eating species, higher molar complexity was related to a greater ability to crush insect prey. They fed beetles to field-caught bats, recorded their feeding behavior, then collected fecal samples to measure how well the beetles had been broken down. “We found that insect-eating bats with more complex molars were better at breaking down prey, but how much bats chewed their prey was also important,” Santana and colleagues say.

Like any specialized tool, teeth are designed to match the task, in this case breaking down food. Tooth shapes are very specialized to meet specific functions, Santana explains. “However, little is known about how the structure of teeth in bats from this family evolved in relation to the types of food they eat. Across mammals, there’s also little information about how differences in tooth structure among species relate to how well they perform during feeding.”

“Our study highlights the functional significance of tooth structure and chewing behavior in breaking down natural prey and provides the basis for future studies relating 3D tooth structure to the animals’ ability to break down food, how species divide up food resources and how those divisions evolve,” they point out. This work provides a major step forward in understanding mammalian feeding systems.

This research was supported by the National Science Foundation, a UMass Natural History Collections David J. Klingener Endowment Scholarship, a Smithsonian Tropical Research Institute Predoctoral Fellowship and a Theodore Roosevelt Memorial Grant from the American Museum of Natural History.

Elizabeth Dumont | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>