Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Good’ Prion-Like Proteins Boost Immune Response

10.08.2011
A person’s ability to battle viruses at the cellular level remarkably resembles the way deadly infectious agents called prions misfold and cluster native proteins to cause disease, UT Southwestern Medical Center researchers report.

This study marks the first discovery of so-called “good” prion-like proteins in human cells and the first to find such proteins involved in innate immunity: the way the body recognizes and responds to threats from viruses or other external agents, said Dr. Zhijian “James” Chen, professor of molecular biology and senior author of the study in the Aug. 5 print edition of the journal Cell.

"An understanding of how cells maintain good prion-like proteins called MAVS [mitochondrial antiviral signaling] protein may help us understand how some prions turn bad,” said Dr. Chen, a Howard Hughes Medical Institute investigator at UT Southwestern. Moreover, the research may also deepen our knowledge of innate immunity and host defense, he said.

Prions are misfolded, self-perpetuating proteins responsible for fatal brain infections such as bovine spongiform encephalopathy – so-called mad cow disease – in cattle and the extremely rare variant Creutzfeldt-Jakob Disease (vCJD) in some people who eat beef from infected cattle. Currently all prion-related diseases are untreatable and are fatal.

The MAVS prion-like proteins usually are scattered on the membranes of the energy-producing organelles called the mitochondria that reside inside cells throughout the body, he explained.

UT Southwestern researchers, investigating the cellular response to invasion by a member of the family of viruses that includes influenza and hepatitis, discovered that the MAVS proteins change shape and recruit other MAVS proteins to misfold and aggregate [cluster] in tough clumps on the surface of the mitochondrial membranes to defend against viral assault, Dr. Chen said.

The researchers created a setup that mimicked the human immune response, but in a controlled laboratory environment where they were able to break open cells and study the cellular components. When those components were mixed with viral RNA (the genetic material also known as ribonucleic acid), the MAVS proteins still formed large clusters.

“Remarkably, the MAVS proteins behave like prions and effectively convert nearby proteins into aggregates on the mitochondrial membrane,” Dr. Chen said. He noted that the aggregates are necessary for the cells to churn out immunity-boosting interferon molecules. When the MAVS activity is blocked, the antiviral defense stops.

The MAVS’ prion-like mechanism gives no indication of the out-of-control replication seen in disease-causing prions, Dr. Chen said, providing an intriguing area for future research.

Other UT Southwestern researchers involved in the study were lead author Dr. Fajian Hou, instructor of molecular biology; Dr. Lijun Sun, assistant professor of molecular biology and an HHMI research specialist; Dr. Hui Zheng, postdoctoral fellow in cell biology; Brian Skaug, a student in the medical scientist training program; and Dr. Qui-Xing Jiang, assistant professor of cell biology.

The study was funded by grants from the National Institutes of Health and the Welch Foundation.

This news release is available on our World Wide Web home page at
http://www.utsouthwestern.edu/home/news/index.html
To automatically receive news releases from UT Southwestern via email,
subscribe at www.utsouthwestern.edu/receivenews

Deborah Wormser | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>