Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global crosstalk limits gene regulation

15.08.2016

Molecular recognition is fundamental to transcriptional regulation, the primary mechanism by which cells control gene expression.

The specificity of this regulation originates in the binding interactions between special regulatory proteins, called transcription factors (TFs), and short regulatory sequences on the DNA, called binding sites.


(a) A TF preferentially binds to its cognate binding site, but can also bind noncognate sites, potentially causing crosstalk--an erroneous activation or repression of a gene. (b) In a global setting where many TFs regulate many genes, the number of possible noncognate interactions grows quickly with the number of TFs; additionally, it may become difficult to keep TF recognition sequences sufficiently distinct from each other. (c) Cells respond to changing environments by attempting to activate subsets of their genes. In this example, the total number of genes is M = 4, and different environments (here, 6 in total) call for activation of differ- ent subsets with Q = 2 genes. To control the expression in every environment, TFs for Q required genes are present, while the TFs for the remaining M ? Q genes are absent. Because of crosstalk, TFs can bind noncognate sites, generating a pattern of gene expression that can differ from the one required.

Credit: IST Austria, 2016

Although each type of TF preferentially binds certain regulatory DNA sequences, evidence shows that this binding specificity is limited, and that TFs bind other noncognate targets, too.

If these sites happen to be regulatory elements of other genes, noncognate binding not only depletes TF molecules, but could also actively interfere with gene regulation. This suggests that the crosstalk problem is global.

In "Intrinsic limits to gene regulation by global crosstalk", a research paper published on August 4 in Nature Communications, ISTFellow Tamar Friedlander, PhD student Roshan Prizak, and Professors Calin Guet, Nick Barton and Gasper Tkacik construct a biophysical model for crosstalk in transcriptional regulation that accounts for all cross-interactions between regulators and their binding sites.

They identify the parameters that have a major influence on crosstalk severity. While some of these parameters are difficult to estimate, they show that there exists a lower bound to crosstalk with respect to these parameters. This implies the existence of a "crosstalk floor," which cannot be overcome even if TF concentrations were optimally adjusted by the cell and compensated for sequestration at noncognate sites.

Although most of the biophysical constraints have been understood at the level of individual genetic regulatory elements, the researchers find that crosstalk is special: while it originates locally due to biophysical limits to molecular recognition, its cumulative effect only emerges globally.

At the level of a single genetic regulatory element, crosstalk can always be avoided by increasing the concentration of cognate TFs or introducing multiple binding sites in the promoter. It is only when these same cognate TFs act as noncognate TFs for other genes, or that new binding sites in the promoter drastically increase the number of noncognate binding configurations, that crosstalk constraints become clear.

Media Contact

Stefan Bernhardt
stefan.bernhardt@ist.ac.at
43-224-39000

 @Istaustria

http://Www.ist.ac.at 

Stefan Bernhardt | EurekAlert!

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>