Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glioblastomas growing from cancer stem cells that use Sonic Hedgehog protein signaling mechanisms appear to be more aggressive

28.10.2008
Mechanism in cells that generate malignant brain tumors may offer target for gene therapy

Researchers at Cedars-Sinai Medical Center’s Maxine Dunitz Neurosurgical Institute who first isolated cancer stem cells in adult brain tumors in 2004 have now identified a molecular mechanism that is involved in the development of these cells from which malignant brain tumors may originate. This could offer a target for scientists seeking treatments that would kill malignant brain tumors at their source and prevent them from recurring.

Normal stem cells are “immature” cells that have the potential to become any of several types of cells. Cancer stem cells have the same multi-potent and self-renewing properties, but instead of producing healthy cells, they propagate cancer cells. Theoretically, if these “mother cells” can be destroyed, the tumor will not be able to sustain itself. On the other hand, if these cells are not removed or destroyed, the tumor will continue to return despite the use of existing cancer-killing therapies.

Glioblastoma multiforme is the most malignant form of tumor that develops in the brain, but not all glioblastomas are identical. Subgroups are comprised of cells originating from different brain tumor stem cells with unique genetic characteristics that use different signaling pathways in their development and growth. The Cedars-Sinai researchers are building genetic “profiles” of these cancer stem cells and the tumors they appear to produce.

In this study, published in the journal Stem Cells (Stem Cells Express online Sept 11., ahead of print), the researchers identified a subset of brain tumor stem cells that is dependent on a protein called Sonic Hedgehog and another subset that is not Hedgehog dependent. The brain tumors resulting from each subset retained the “signaling dependency” characteristics of the mother cells, and in laboratory experiments and studies in laboratory mice, pathway-specific blocking interventions prevented the brain tumor stem cells from being able to renew themselves.

Although cancer stem cell involvement in the genesis of brain tumors is hypothetical and in the early stages of scientific discovery, the Sonic Hedgehog signaling mechanism appears to be one of the molecular mechanisms regulating both normal stem cell growth and cancer stem cell growth.

“According to our analysis, patients who have malignant brain tumors produced from cancer stem cells that rely on this mechanism have a shorter survival than those who don’t,” said John S. Yu, M.D., director of Surgical Neuro-oncology at Cedars-Sinai and senior author of the Stem Cells article.

Further investigation of these and other pathways may allow scientists to devise therapies to block the underlying cancer-causing mechanisms with genes or small molecules, according to the research team.

“Understanding the mechanisms behind cancer stem cells, which may be the root and cause of cancers, may allow us to determine how these cancers start and, more importantly, how best to target them to prevent their growth and spread,” said Keith L. Black, M.D., chairman of the Department of Neurosurgery, director of the Maxine Dunitz Neurosurgical Institute, and one of the paper’s authors.

After isolating cancer stem cells in adult brain tumors in 2004, the Cedars-Sinai researchers in 2006 reported that these cells are highly resistant to chemotherapy and other treatments. Even if a tumor is almost completely obliterated, it will regenerate from the surviving cancer stem cells and be even more resistant to treatment than before.

This study was supported in part by grants from the National Institutes of Health.

Citation: Stem Cells, “Hedgehog signaling regulates brain tumor stem cell self-renewal and portends shorter survival for patients with PTEN-coexpressing glioblastomas,” published online Sept. 11, 2008. To arrange interviews, please contact Sandy Van at 1-800-880-2397 or by reply e-mail.

Sandy Van | Cedars-Sinai Medical Center
Further information:
http://www.cedars-sinai.edu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>