Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glioblastomas growing from cancer stem cells that use Sonic Hedgehog protein signaling mechanisms appear to be more aggressive

28.10.2008
Mechanism in cells that generate malignant brain tumors may offer target for gene therapy

Researchers at Cedars-Sinai Medical Center’s Maxine Dunitz Neurosurgical Institute who first isolated cancer stem cells in adult brain tumors in 2004 have now identified a molecular mechanism that is involved in the development of these cells from which malignant brain tumors may originate. This could offer a target for scientists seeking treatments that would kill malignant brain tumors at their source and prevent them from recurring.

Normal stem cells are “immature” cells that have the potential to become any of several types of cells. Cancer stem cells have the same multi-potent and self-renewing properties, but instead of producing healthy cells, they propagate cancer cells. Theoretically, if these “mother cells” can be destroyed, the tumor will not be able to sustain itself. On the other hand, if these cells are not removed or destroyed, the tumor will continue to return despite the use of existing cancer-killing therapies.

Glioblastoma multiforme is the most malignant form of tumor that develops in the brain, but not all glioblastomas are identical. Subgroups are comprised of cells originating from different brain tumor stem cells with unique genetic characteristics that use different signaling pathways in their development and growth. The Cedars-Sinai researchers are building genetic “profiles” of these cancer stem cells and the tumors they appear to produce.

In this study, published in the journal Stem Cells (Stem Cells Express online Sept 11., ahead of print), the researchers identified a subset of brain tumor stem cells that is dependent on a protein called Sonic Hedgehog and another subset that is not Hedgehog dependent. The brain tumors resulting from each subset retained the “signaling dependency” characteristics of the mother cells, and in laboratory experiments and studies in laboratory mice, pathway-specific blocking interventions prevented the brain tumor stem cells from being able to renew themselves.

Although cancer stem cell involvement in the genesis of brain tumors is hypothetical and in the early stages of scientific discovery, the Sonic Hedgehog signaling mechanism appears to be one of the molecular mechanisms regulating both normal stem cell growth and cancer stem cell growth.

“According to our analysis, patients who have malignant brain tumors produced from cancer stem cells that rely on this mechanism have a shorter survival than those who don’t,” said John S. Yu, M.D., director of Surgical Neuro-oncology at Cedars-Sinai and senior author of the Stem Cells article.

Further investigation of these and other pathways may allow scientists to devise therapies to block the underlying cancer-causing mechanisms with genes or small molecules, according to the research team.

“Understanding the mechanisms behind cancer stem cells, which may be the root and cause of cancers, may allow us to determine how these cancers start and, more importantly, how best to target them to prevent their growth and spread,” said Keith L. Black, M.D., chairman of the Department of Neurosurgery, director of the Maxine Dunitz Neurosurgical Institute, and one of the paper’s authors.

After isolating cancer stem cells in adult brain tumors in 2004, the Cedars-Sinai researchers in 2006 reported that these cells are highly resistant to chemotherapy and other treatments. Even if a tumor is almost completely obliterated, it will regenerate from the surviving cancer stem cells and be even more resistant to treatment than before.

This study was supported in part by grants from the National Institutes of Health.

Citation: Stem Cells, “Hedgehog signaling regulates brain tumor stem cell self-renewal and portends shorter survival for patients with PTEN-coexpressing glioblastomas,” published online Sept. 11, 2008. To arrange interviews, please contact Sandy Van at 1-800-880-2397 or by reply e-mail.

Sandy Van | Cedars-Sinai Medical Center
Further information:
http://www.cedars-sinai.edu/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>