Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glioblastomas growing from cancer stem cells that use Sonic Hedgehog protein signaling mechanisms appear to be more aggressive

28.10.2008
Mechanism in cells that generate malignant brain tumors may offer target for gene therapy

Researchers at Cedars-Sinai Medical Center’s Maxine Dunitz Neurosurgical Institute who first isolated cancer stem cells in adult brain tumors in 2004 have now identified a molecular mechanism that is involved in the development of these cells from which malignant brain tumors may originate. This could offer a target for scientists seeking treatments that would kill malignant brain tumors at their source and prevent them from recurring.

Normal stem cells are “immature” cells that have the potential to become any of several types of cells. Cancer stem cells have the same multi-potent and self-renewing properties, but instead of producing healthy cells, they propagate cancer cells. Theoretically, if these “mother cells” can be destroyed, the tumor will not be able to sustain itself. On the other hand, if these cells are not removed or destroyed, the tumor will continue to return despite the use of existing cancer-killing therapies.

Glioblastoma multiforme is the most malignant form of tumor that develops in the brain, but not all glioblastomas are identical. Subgroups are comprised of cells originating from different brain tumor stem cells with unique genetic characteristics that use different signaling pathways in their development and growth. The Cedars-Sinai researchers are building genetic “profiles” of these cancer stem cells and the tumors they appear to produce.

In this study, published in the journal Stem Cells (Stem Cells Express online Sept 11., ahead of print), the researchers identified a subset of brain tumor stem cells that is dependent on a protein called Sonic Hedgehog and another subset that is not Hedgehog dependent. The brain tumors resulting from each subset retained the “signaling dependency” characteristics of the mother cells, and in laboratory experiments and studies in laboratory mice, pathway-specific blocking interventions prevented the brain tumor stem cells from being able to renew themselves.

Although cancer stem cell involvement in the genesis of brain tumors is hypothetical and in the early stages of scientific discovery, the Sonic Hedgehog signaling mechanism appears to be one of the molecular mechanisms regulating both normal stem cell growth and cancer stem cell growth.

“According to our analysis, patients who have malignant brain tumors produced from cancer stem cells that rely on this mechanism have a shorter survival than those who don’t,” said John S. Yu, M.D., director of Surgical Neuro-oncology at Cedars-Sinai and senior author of the Stem Cells article.

Further investigation of these and other pathways may allow scientists to devise therapies to block the underlying cancer-causing mechanisms with genes or small molecules, according to the research team.

“Understanding the mechanisms behind cancer stem cells, which may be the root and cause of cancers, may allow us to determine how these cancers start and, more importantly, how best to target them to prevent their growth and spread,” said Keith L. Black, M.D., chairman of the Department of Neurosurgery, director of the Maxine Dunitz Neurosurgical Institute, and one of the paper’s authors.

After isolating cancer stem cells in adult brain tumors in 2004, the Cedars-Sinai researchers in 2006 reported that these cells are highly resistant to chemotherapy and other treatments. Even if a tumor is almost completely obliterated, it will regenerate from the surviving cancer stem cells and be even more resistant to treatment than before.

This study was supported in part by grants from the National Institutes of Health.

Citation: Stem Cells, “Hedgehog signaling regulates brain tumor stem cell self-renewal and portends shorter survival for patients with PTEN-coexpressing glioblastomas,” published online Sept. 11, 2008. To arrange interviews, please contact Sandy Van at 1-800-880-2397 or by reply e-mail.

Sandy Van | Cedars-Sinai Medical Center
Further information:
http://www.cedars-sinai.edu/

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>