Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glial cells can cross from the central to the peripheral nervous system

02.12.2009
New study about 'helper' cells has implications for nerve disorders such as multiple sclerosis

Glial cells, which help neurons communicate with each other, can leave the central nervous system and cross into the peripheral nervous system to compensate for missing cells, according to new research in the Dec. 2 issue of The Journal of Neuroscience.

The animal study contributes to researchers' basic understanding of how the two nervous systems develop and are maintained, which is essential for the effective treatment of diseases such as multiple sclerosis.

The nervous system is divided into the central nervous system (the brain and spinal cord) and the peripheral nervous system (sensory organs, muscles, and glands). A major difference between the systems is that each has its own type of glial cells. In a healthy body, glial cells are tightly segregated and aren't known to travel between the two systems. The peripheral nervous system also regenerates more than the central nervous system, due in part to its glial cells — a characteristic that, if better understood, might be used to improve the regenerative capabilities of the central nervous system.

Glial cells serve nerve cells by insulating them with layers of fats and proteins called myelin. Myelin coatings are necessary for nerve signals to be transmitted normally; when the sheaths are lost, disorders involving impairment in sensation, movement and cognition such as multiple sclerosis or amyotrophic lateral sclerosis develop. Glial cells named oligodendrocytes produce myelin around nerves of the central nervous system, while those named Schwann cells make myelin that insulates peripheral nerves.

This study shows that in the absence of Schwann cells, oligodendrocytes migrate from the central nervous system along motor nerves and form myelin on peripheral nerves, indicating that glial cell movement across the border is controlled by a self-policing mechanism.

"Past studies have hinted that Schwann cells can cross into the central nervous system after peripheral nerves near the border are damaged, or after central nerves lose their myelin sheath," said Bruce Appel, PhD, of the University of Colorado Denver Anschutz Medical Campus, one of the study's authors. "However, migration across the border has never been observed directly, nor was there any evidence that oligodendrocytes can move in the opposite direction."

The authors used time-lapse video of mutant zebrafish to study the glial cell movement. Movies of translucent live zebrafish that lacked Schwann cells showed that oligodendrocytes left the central nervous system to wrap peripheral nerves with myelin — effectively attempting to compensate for the missing Schwann cells.

"This new observation is not only relevant to normal nerve function, but also to potential causes of disease in the peripheral nervous system. We're still unsure as to exactly how foreign glial cells interact with the other system. Do they help heal or do they act as a toxin?" said Bruce Trapp, PhD, at the Cleveland Clinic, who is unaffiliated with the study. "Knowing the mechanisms that anatomically restrict peripheral and central nervous system glia could help develop therapies that treat or prevent certain nervous system diseases."

Appel and his colleagues said that future investigations are needed to determine how different glial cells communicate to restrict their movements between nervous systems, and whether oligodendrocyte myelin can fully substitute for Schwann cell myelin on motor nerves.

Study video and images are available upon request.

The research was supported by the National Institute of Neurological Disorders and Stroke and a zebrafish initiative funded by the Vanderbilt University Academic Venture Capital Fund.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 40,000 basic scientists and clinicians who study the brain and nervous system. Appel can be reached at bruce.appel@ucdenver.edu.

Kat Snodgrass | EurekAlert!
Further information:
http://www.sfn.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>