Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glanville fritillary genome sequenced at the University of Helsinki

05.09.2014

The Glanville fritillary has long been an internationally known model species for ecology and evolutionary biology, whose population biology has been studied on the Åland Islands for more than twenty years.

 Now the species has become even more significant. Led by Research Professor Ilkka Hanski, the Metapopulation Research Group (MRG) at the University of Helsinki has sequenced the full genome of the Glanville fritillary together with three groups from the Institute of Biotechnology at the same university.


This is a Granville fritillary (Melitaea cinxia).

Credit: Tari Haahtela

Before the sequencing of the Glanville fritillary genome, which is approximately 390 million base pairs long, the only genomes sequenced in Finland were those of viruses and bacteria. After the silk moth and longwing, the Glanville fritillary is now the third species of butterfly for which both the sequence of its full genome and a high-resolution genetic map is available. The map displays the location of approximately 16,000 genes in the species' 31 chromosomes.

The study also confirms the hypothesis that the ancestral lepidopteran species had 31 chromosomes, as originally proposed by Esko Suomalainen, professor of genetics at the University of Helsinki in the 1960s.

"The most astonishing thing is that it seems like the genes have stayed in the same chromosomes practically throughout the evolutionary history of butterflies –at least for 140 million years. Such stability is nearly unique among all organisms. What is even more surprising is that even though some chromosomes have fused during the lepidopteran evolution, the genes remain on their own side of the chromosome even after chromosomal fusions," explains group leader Mikko Frilander of the Institute of Biotechnology, who participated in the study.

Originally consisting of ecologists, MRG focused heavily on genome sequencing, as its objective is to combine genetic and genomic research with its strong ecological and evolutionary biological research.

"We want the Glanville fritillary to become a new model species for integrative biology. The next challenge is to get more biologists interested in the species," states Research Professor Ilkka Hanski.

The sequencing of the Glanville fritillary genome was a four-year project, funded by the European Research Council and the Academy of Finland.

Most of the sequencing was conducted on the Viikki Campus, at the Institute of Biotechnology of the University of Helsinki, under the supervision of Petri Auvinen. Genome assembly was the responsibility of Panu Somervuo of MRG and Leena Salmela from the Department of Computer Science. Gene annotation and predicting their function was conducted by Virpi Ahola from MRG together with Liisa Holm, professor in bioinformatics, and Patrik Koskinen.

The high-resolution genetic map for the Glanville fritillary was constructed using a tool developed by Pasi Rastas, from MRG.

Ilkka Hanski | Eurek Alert!
Further information:
http://www.helsinki.fi

Further reports about: Biotechnology Genome Helsinki ancestral bacteria chromosomes ecological fritillary genes genomic moth silk species viruses

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>