Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glanville fritillary genome sequenced at the University of Helsinki

05.09.2014

The Glanville fritillary has long been an internationally known model species for ecology and evolutionary biology, whose population biology has been studied on the Åland Islands for more than twenty years.

 Now the species has become even more significant. Led by Research Professor Ilkka Hanski, the Metapopulation Research Group (MRG) at the University of Helsinki has sequenced the full genome of the Glanville fritillary together with three groups from the Institute of Biotechnology at the same university.


This is a Granville fritillary (Melitaea cinxia).

Credit: Tari Haahtela

Before the sequencing of the Glanville fritillary genome, which is approximately 390 million base pairs long, the only genomes sequenced in Finland were those of viruses and bacteria. After the silk moth and longwing, the Glanville fritillary is now the third species of butterfly for which both the sequence of its full genome and a high-resolution genetic map is available. The map displays the location of approximately 16,000 genes in the species' 31 chromosomes.

The study also confirms the hypothesis that the ancestral lepidopteran species had 31 chromosomes, as originally proposed by Esko Suomalainen, professor of genetics at the University of Helsinki in the 1960s.

"The most astonishing thing is that it seems like the genes have stayed in the same chromosomes practically throughout the evolutionary history of butterflies –at least for 140 million years. Such stability is nearly unique among all organisms. What is even more surprising is that even though some chromosomes have fused during the lepidopteran evolution, the genes remain on their own side of the chromosome even after chromosomal fusions," explains group leader Mikko Frilander of the Institute of Biotechnology, who participated in the study.

Originally consisting of ecologists, MRG focused heavily on genome sequencing, as its objective is to combine genetic and genomic research with its strong ecological and evolutionary biological research.

"We want the Glanville fritillary to become a new model species for integrative biology. The next challenge is to get more biologists interested in the species," states Research Professor Ilkka Hanski.

The sequencing of the Glanville fritillary genome was a four-year project, funded by the European Research Council and the Academy of Finland.

Most of the sequencing was conducted on the Viikki Campus, at the Institute of Biotechnology of the University of Helsinki, under the supervision of Petri Auvinen. Genome assembly was the responsibility of Panu Somervuo of MRG and Leena Salmela from the Department of Computer Science. Gene annotation and predicting their function was conducted by Virpi Ahola from MRG together with Liisa Holm, professor in bioinformatics, and Patrik Koskinen.

The high-resolution genetic map for the Glanville fritillary was constructed using a tool developed by Pasi Rastas, from MRG.

Ilkka Hanski | Eurek Alert!
Further information:
http://www.helsinki.fi

Further reports about: Biotechnology Genome Helsinki ancestral bacteria chromosomes ecological fritillary genes genomic moth silk species viruses

More articles from Life Sciences:

nachricht Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools
30.06.2016 | Rice University

nachricht A protein coat helps chromosomes keep their distance
30.06.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>