Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glanville fritillary genome sequenced at the University of Helsinki

05.09.2014

The Glanville fritillary has long been an internationally known model species for ecology and evolutionary biology, whose population biology has been studied on the Åland Islands for more than twenty years.

 Now the species has become even more significant. Led by Research Professor Ilkka Hanski, the Metapopulation Research Group (MRG) at the University of Helsinki has sequenced the full genome of the Glanville fritillary together with three groups from the Institute of Biotechnology at the same university.


This is a Granville fritillary (Melitaea cinxia).

Credit: Tari Haahtela

Before the sequencing of the Glanville fritillary genome, which is approximately 390 million base pairs long, the only genomes sequenced in Finland were those of viruses and bacteria. After the silk moth and longwing, the Glanville fritillary is now the third species of butterfly for which both the sequence of its full genome and a high-resolution genetic map is available. The map displays the location of approximately 16,000 genes in the species' 31 chromosomes.

The study also confirms the hypothesis that the ancestral lepidopteran species had 31 chromosomes, as originally proposed by Esko Suomalainen, professor of genetics at the University of Helsinki in the 1960s.

"The most astonishing thing is that it seems like the genes have stayed in the same chromosomes practically throughout the evolutionary history of butterflies –at least for 140 million years. Such stability is nearly unique among all organisms. What is even more surprising is that even though some chromosomes have fused during the lepidopteran evolution, the genes remain on their own side of the chromosome even after chromosomal fusions," explains group leader Mikko Frilander of the Institute of Biotechnology, who participated in the study.

Originally consisting of ecologists, MRG focused heavily on genome sequencing, as its objective is to combine genetic and genomic research with its strong ecological and evolutionary biological research.

"We want the Glanville fritillary to become a new model species for integrative biology. The next challenge is to get more biologists interested in the species," states Research Professor Ilkka Hanski.

The sequencing of the Glanville fritillary genome was a four-year project, funded by the European Research Council and the Academy of Finland.

Most of the sequencing was conducted on the Viikki Campus, at the Institute of Biotechnology of the University of Helsinki, under the supervision of Petri Auvinen. Genome assembly was the responsibility of Panu Somervuo of MRG and Leena Salmela from the Department of Computer Science. Gene annotation and predicting their function was conducted by Virpi Ahola from MRG together with Liisa Holm, professor in bioinformatics, and Patrik Koskinen.

The high-resolution genetic map for the Glanville fritillary was constructed using a tool developed by Pasi Rastas, from MRG.

Ilkka Hanski | Eurek Alert!
Further information:
http://www.helsinki.fi

Further reports about: Biotechnology Genome Helsinki ancestral bacteria chromosomes ecological fritillary genes genomic moth silk species viruses

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>