Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Glanville fritillary genome sequenced at the University of Helsinki


The Glanville fritillary has long been an internationally known model species for ecology and evolutionary biology, whose population biology has been studied on the Åland Islands for more than twenty years.

 Now the species has become even more significant. Led by Research Professor Ilkka Hanski, the Metapopulation Research Group (MRG) at the University of Helsinki has sequenced the full genome of the Glanville fritillary together with three groups from the Institute of Biotechnology at the same university.

This is a Granville fritillary (Melitaea cinxia).

Credit: Tari Haahtela

Before the sequencing of the Glanville fritillary genome, which is approximately 390 million base pairs long, the only genomes sequenced in Finland were those of viruses and bacteria. After the silk moth and longwing, the Glanville fritillary is now the third species of butterfly for which both the sequence of its full genome and a high-resolution genetic map is available. The map displays the location of approximately 16,000 genes in the species' 31 chromosomes.

The study also confirms the hypothesis that the ancestral lepidopteran species had 31 chromosomes, as originally proposed by Esko Suomalainen, professor of genetics at the University of Helsinki in the 1960s.

"The most astonishing thing is that it seems like the genes have stayed in the same chromosomes practically throughout the evolutionary history of butterflies –at least for 140 million years. Such stability is nearly unique among all organisms. What is even more surprising is that even though some chromosomes have fused during the lepidopteran evolution, the genes remain on their own side of the chromosome even after chromosomal fusions," explains group leader Mikko Frilander of the Institute of Biotechnology, who participated in the study.

Originally consisting of ecologists, MRG focused heavily on genome sequencing, as its objective is to combine genetic and genomic research with its strong ecological and evolutionary biological research.

"We want the Glanville fritillary to become a new model species for integrative biology. The next challenge is to get more biologists interested in the species," states Research Professor Ilkka Hanski.

The sequencing of the Glanville fritillary genome was a four-year project, funded by the European Research Council and the Academy of Finland.

Most of the sequencing was conducted on the Viikki Campus, at the Institute of Biotechnology of the University of Helsinki, under the supervision of Petri Auvinen. Genome assembly was the responsibility of Panu Somervuo of MRG and Leena Salmela from the Department of Computer Science. Gene annotation and predicting their function was conducted by Virpi Ahola from MRG together with Liisa Holm, professor in bioinformatics, and Patrik Koskinen.

The high-resolution genetic map for the Glanville fritillary was constructed using a tool developed by Pasi Rastas, from MRG.

Ilkka Hanski | Eurek Alert!
Further information:

Further reports about: Biotechnology Genome Helsinki ancestral bacteria chromosomes ecological fritillary genes genomic moth silk species viruses

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>