Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists uncover mechanism for the major genetic risk factor of Alzheimer's disease

14.10.2010
ApoE4 causes GABAergic interneuron impairment, leading to learning and memory deficits

Alzheimer's disease (AD) is an extremely complicated disease. Several proteins seem to be involved in its cause and progression. For example, the lipid-transport protein apolipoprotein E4 (apoE4) is the major genetic risk factor for AD, and apoE4 carriers account for 65% of all Alzheimer's cases, but exactly how apoE4 contributes to the disease is unclear.

Scientists at the Gladstone Institutes of Neurological Disease (GIND) have provided new insights into how apoE4 might be involved. In a study published today online in the Journal of Neuroscience, researchers led by led by Yadong Huang, MD, PhD, reported that apoE4-dependent learning and memory deficits are caused by loss of a specific type of neuron in the learning and memory center of the brain.

"We found that mice that had been genetically engineered to produce human apoE4 lost a specific kind of cells and that loss of these cells correlated with the extent of learning and memory deficits," said Yaisa Andrews-Zwilling, PhD, postdoctoral fellow and lead author of the study.

Those key cells are called GABAergic interneurons in the hilus of the hippocampus, an area of the brain involved in learning and memory and affected by AD. GABA is an important neurotransmitter released from GABAergic interneurons. As one component of a delicately balanced system for regulating brain activity, GABA functions to inhibit brain activity. AD brains seem to have low levels of GABA.

"Importantly, apoE4 causes GABAergic interneuron loss and learning and memory deficits in the absence of Ab peptide accumulation, a widely suspected toxin in Alzheimer's disease," said Dr. Huang, senior author of the study. "This demonstrates clearly that apoE4 plays Ab-independent roles in Alzheimer's disease."

To try to overcome the decrease of GABAergic interneuron function, the Gladstone team treated the apoE4 mice with daily injections of pentobarbital, a compound that enhances GABA action. They found that the injections rescued the learning and memory deficits in the mice. They also examined the effects of apoE4 on tau, another protein implicated in Alzheimer's disease. When they genetically eliminated the mouse's own tau, the loss of the GABAergic interneuron was halted and the learning and memory deficits were prevented.

"We previously showed that suppressing the protein tau can prevent Aâ from causing memory deficits and other abnormalities in mouse models of Alzheimer's disease," said Dr. Lennart Mucke, director of the Gladstone Institute of Neurological Disease. "This new study demonstrates that tau also acts downstream of apoE4. Thus, tau might be a general causative factor in Alzheimer's disease pathogenesis."

ApoE4 seems to increase the concentration of a particular species of tau—phosphorylated tau known to be toxic in some kinds of neurodegeneration. Increases in the levels of phosphorylated tau eventually kill the GABAergic interneurons, and this loss leads to learning and memory deficits. The Gladstone team showed that giving the mice pentobarbital to boost the GABA function could stop this chain of events. In effect, they were providing a product of a reaction downstream from where apoE4 disrupts the pathway.

"Clinical studies have shown that apoE4 is associated with increased activity in the hippocampus at rest and in response to memory tasks in humans. Our study suggests that this may reflect the impaired GABAergic inhibitory neuronal functions in the presence of apoE4," said Dr. Huang. "Our study also demonstrates that increasing GABA signaling and reducing tau are potential strategies to treat or prevent apoE4-related Alzheimer's disease."

The team also included Gladstone's Nga Bien-Ly, Qin Xu, Gang Li, Aubrey Bernardo, Seo Yeon Yoon, Daniel Zwilling, Tonya Xue Yan, and Ligong Chen.

The research was supported in part by NIH.

Yadong Huang's primary affiliation is with the Gladstone Institute of Neurological Disease, where he is associate investigator and where his laboratory is located and his research is conducted. He is also an associate professor of Pathology and Neurology at UCSF.

Gladstone Institutes is a nonprofit, independent research and educational institution, consisting of the Gladstone Institute of Cardiovascular Disease, the Gladstone Institute of Virology and Immunology, and the Gladstone Institute of Neurological Disease. Independent in its governance, finances and research programs, Gladstone shares a close affiliation with UCSF through its faculty, who hold joint UCSF appointments.

Valerie Tucker | EurekAlert!
Further information:
http://www.ucsf.edu

Further reports about: Disease GABA UCSF memory deficits mouse model neurological phosphorylated tau

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>