Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify single microRNA that controls how heart chambers form

28.10.2008
May provide strategies for treating congential heart defects

Scientists at the Gladstone Institute of Cardiovascular Disease (GICD) and the University of California San Francisco (UCSF) have identified a genetic factor critical to the formation of chambers in the developing heart. The discovery of the role of a microRNA called miR-138, could offer strategies for the treatment of congenital heart defects.

The heart is one of the first and most important organs to develop. In fact, embryos cannot survive long with a functioning heart. In vertebrates (animals with backbones), special cells form a heart tube; that tube loops back on itself to form the atrium and ventricle and the canal and valve that separates them. This requires a complicated sequence of genes turning on and off. MicroRNAs are very small RNAs of 20 to 25 nucleotides that regulate numerous gene functions. Approximately 650 human miRNAs are known, but only a few have yet been studied to determine what they actually do in a cell.

Researchers, led by Sarah Morton, an MD/PhD student at UCSF and GICD Director Deepak Srivastava MD, examined zebrafish, which are an ideal model system for understanding genetic functions. Zebrafish are small, reproduce fast, and are essentially transparent so that that events of heart formation can be studied while they are still alive. Yet many of their systems are quite similar to those of humans. For example, miR-138 is exactly the same in zebrafish and humans.

"What's interesting is that a single microRNA is responsible for setting up the distinct patterning of a developing heart into separate chambers," said Dr. Srivastava, senior author of the study. "Since many congenital heart defects involve abnormalities in the formation of the chambers, this is important information in finding ways of treating or avoiding those defects."

The GICD scientists reported in today's issue of the Proceedings of the National Academy of Sciences USA, that miR-138 is present in the zebrafish heart at specific times and in specific places in the developing heart. Furthermore, they showed that it is required to insure that the cardiac chambers develop properly. When the scientists used genetic engineering techniques to eliminate miR-138, cardiac function was disrupted, and the ventricles did not develop correctly, with the muscle precursor cells failing to mature properly.

"The miR-138 function was required during a discrete developmental window that occurred 24-34 hours after fertilization," said Sarah Morton. The team also showed that the miRNA controlled development by regulating numerous factors that function jointly to define the chambers, including a key enzyme that makes retinoic acid.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>