Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify single microRNA that controls how heart chambers form

28.10.2008
May provide strategies for treating congential heart defects

Scientists at the Gladstone Institute of Cardiovascular Disease (GICD) and the University of California San Francisco (UCSF) have identified a genetic factor critical to the formation of chambers in the developing heart. The discovery of the role of a microRNA called miR-138, could offer strategies for the treatment of congenital heart defects.

The heart is one of the first and most important organs to develop. In fact, embryos cannot survive long with a functioning heart. In vertebrates (animals with backbones), special cells form a heart tube; that tube loops back on itself to form the atrium and ventricle and the canal and valve that separates them. This requires a complicated sequence of genes turning on and off. MicroRNAs are very small RNAs of 20 to 25 nucleotides that regulate numerous gene functions. Approximately 650 human miRNAs are known, but only a few have yet been studied to determine what they actually do in a cell.

Researchers, led by Sarah Morton, an MD/PhD student at UCSF and GICD Director Deepak Srivastava MD, examined zebrafish, which are an ideal model system for understanding genetic functions. Zebrafish are small, reproduce fast, and are essentially transparent so that that events of heart formation can be studied while they are still alive. Yet many of their systems are quite similar to those of humans. For example, miR-138 is exactly the same in zebrafish and humans.

"What's interesting is that a single microRNA is responsible for setting up the distinct patterning of a developing heart into separate chambers," said Dr. Srivastava, senior author of the study. "Since many congenital heart defects involve abnormalities in the formation of the chambers, this is important information in finding ways of treating or avoiding those defects."

The GICD scientists reported in today's issue of the Proceedings of the National Academy of Sciences USA, that miR-138 is present in the zebrafish heart at specific times and in specific places in the developing heart. Furthermore, they showed that it is required to insure that the cardiac chambers develop properly. When the scientists used genetic engineering techniques to eliminate miR-138, cardiac function was disrupted, and the ventricles did not develop correctly, with the muscle precursor cells failing to mature properly.

"The miR-138 function was required during a discrete developmental window that occurred 24-34 hours after fertilization," said Sarah Morton. The team also showed that the miRNA controlled development by regulating numerous factors that function jointly to define the chambers, including a key enzyme that makes retinoic acid.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>