Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify single microRNA that controls how heart chambers form

28.10.2008
May provide strategies for treating congential heart defects

Scientists at the Gladstone Institute of Cardiovascular Disease (GICD) and the University of California San Francisco (UCSF) have identified a genetic factor critical to the formation of chambers in the developing heart. The discovery of the role of a microRNA called miR-138, could offer strategies for the treatment of congenital heart defects.

The heart is one of the first and most important organs to develop. In fact, embryos cannot survive long with a functioning heart. In vertebrates (animals with backbones), special cells form a heart tube; that tube loops back on itself to form the atrium and ventricle and the canal and valve that separates them. This requires a complicated sequence of genes turning on and off. MicroRNAs are very small RNAs of 20 to 25 nucleotides that regulate numerous gene functions. Approximately 650 human miRNAs are known, but only a few have yet been studied to determine what they actually do in a cell.

Researchers, led by Sarah Morton, an MD/PhD student at UCSF and GICD Director Deepak Srivastava MD, examined zebrafish, which are an ideal model system for understanding genetic functions. Zebrafish are small, reproduce fast, and are essentially transparent so that that events of heart formation can be studied while they are still alive. Yet many of their systems are quite similar to those of humans. For example, miR-138 is exactly the same in zebrafish and humans.

"What's interesting is that a single microRNA is responsible for setting up the distinct patterning of a developing heart into separate chambers," said Dr. Srivastava, senior author of the study. "Since many congenital heart defects involve abnormalities in the formation of the chambers, this is important information in finding ways of treating or avoiding those defects."

The GICD scientists reported in today's issue of the Proceedings of the National Academy of Sciences USA, that miR-138 is present in the zebrafish heart at specific times and in specific places in the developing heart. Furthermore, they showed that it is required to insure that the cardiac chambers develop properly. When the scientists used genetic engineering techniques to eliminate miR-138, cardiac function was disrupted, and the ventricles did not develop correctly, with the muscle precursor cells failing to mature properly.

"The miR-138 function was required during a discrete developmental window that occurred 24-34 hours after fertilization," said Sarah Morton. The team also showed that the miRNA controlled development by regulating numerous factors that function jointly to define the chambers, including a key enzyme that makes retinoic acid.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>