Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giving tumor vaccines a proper introduction

11.04.2011
Therapies that target specialized cells residing within the lymph nodes may help to rally tumor-killing immune responses

Given how effectively the immune system can eliminate foreign threats such bacteria and viruses, hopes are high for the development of strategies that might turn these same defense mechanisms against cancerous targets.

However, attempts to train the immune system to recognize malignancies via the intravenous injection of vaccines that present tumor-derived antigens have fallen short.

According to Kenichi Asano, a researcher with Masato Tanaka’s group at the RIKEN Center for Allergy and Immunology in Yokohama, this is the result of ‘tolerance’ mechanisms that protect against autoimmune disease. “Billions of cells die every day, and cell corpses must be removed swiftly from our body in order not to induce detrimental effects,” he says. In this scenario, macrophage cells in the spleen clean house by devouring such debris in a process known as phagocytosis, thereby preventing dead cells from triggering an inflammatory response.

Tumor cells delivered into the lymphatic system via subcutaneous injection, however, can successfully elicit a strong immune response, and new research from Asano and colleagues explains why this is the case[1]. In order to rouse an effective reaction, phagocytic cells must present recognizable chunks of those dead cells to tumor-killing cytotoxic T lymphocytes (CTLs). The researchers identified a very specific subset of macrophages within the lymph nodes that perform this task.

Intriguingly, these cells, which are distinguishable by their expression of the cell-surface protein CD169, are non-migratory and reside stably within the sinuses of the lymph node, awaiting their prey like spiders in a web. Dead cancer cells delivered to these sinuses via the lymphatic system are rapidly digested by the macrophages (Fig. 1), which in turn cross-present the resulting antigens to CTLs. By selectively killing off these macrophages with diphtheria toxin, the researchers were able to essentially disable the immune response. “Without CD169 macrophages, tumor-directed T cells were no longer activated—that means these cells dominate anti-tumor immunity after tumor cell death,” says Asano.

These findings help explain why the dead cells that slough off of tumors into the lymphatic system during radiation or chemotherapy are sometimes sufficient to provoke an immune response, and could provide the foundation for far more effective cancer immunotherapy strategies. “I believe it is very promising to mount anti-tumor immunity in patients with solid tumors by delivering tumor antigens specifically to CD169 macrophages,” says Asano. “It's my dream to invent artificial materials that possess the characteristics of dead cells and are safe for administration to patients.”

The corresponding author for this highlight is based at the Laboratory for Innate Cellular Immunity, RIKEN Research Center for Allergy and Immunology

Journal information

[1] Asano, K., Nabeyama, A., Miyake, Y., Qiu, C.-H., Kurita, A., Tomura, M., Kanagawa, O., Fujii, S.-I. & Tanaka, M. CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity 34, 85–95 (2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6560
http://www.researchsea.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>