Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giving tumor vaccines a proper introduction

11.04.2011
Therapies that target specialized cells residing within the lymph nodes may help to rally tumor-killing immune responses

Given how effectively the immune system can eliminate foreign threats such bacteria and viruses, hopes are high for the development of strategies that might turn these same defense mechanisms against cancerous targets.

However, attempts to train the immune system to recognize malignancies via the intravenous injection of vaccines that present tumor-derived antigens have fallen short.

According to Kenichi Asano, a researcher with Masato Tanaka’s group at the RIKEN Center for Allergy and Immunology in Yokohama, this is the result of ‘tolerance’ mechanisms that protect against autoimmune disease. “Billions of cells die every day, and cell corpses must be removed swiftly from our body in order not to induce detrimental effects,” he says. In this scenario, macrophage cells in the spleen clean house by devouring such debris in a process known as phagocytosis, thereby preventing dead cells from triggering an inflammatory response.

Tumor cells delivered into the lymphatic system via subcutaneous injection, however, can successfully elicit a strong immune response, and new research from Asano and colleagues explains why this is the case[1]. In order to rouse an effective reaction, phagocytic cells must present recognizable chunks of those dead cells to tumor-killing cytotoxic T lymphocytes (CTLs). The researchers identified a very specific subset of macrophages within the lymph nodes that perform this task.

Intriguingly, these cells, which are distinguishable by their expression of the cell-surface protein CD169, are non-migratory and reside stably within the sinuses of the lymph node, awaiting their prey like spiders in a web. Dead cancer cells delivered to these sinuses via the lymphatic system are rapidly digested by the macrophages (Fig. 1), which in turn cross-present the resulting antigens to CTLs. By selectively killing off these macrophages with diphtheria toxin, the researchers were able to essentially disable the immune response. “Without CD169 macrophages, tumor-directed T cells were no longer activated—that means these cells dominate anti-tumor immunity after tumor cell death,” says Asano.

These findings help explain why the dead cells that slough off of tumors into the lymphatic system during radiation or chemotherapy are sometimes sufficient to provoke an immune response, and could provide the foundation for far more effective cancer immunotherapy strategies. “I believe it is very promising to mount anti-tumor immunity in patients with solid tumors by delivering tumor antigens specifically to CD169 macrophages,” says Asano. “It's my dream to invent artificial materials that possess the characteristics of dead cells and are safe for administration to patients.”

The corresponding author for this highlight is based at the Laboratory for Innate Cellular Immunity, RIKEN Research Center for Allergy and Immunology

Journal information

[1] Asano, K., Nabeyama, A., Miyake, Y., Qiu, C.-H., Kurita, A., Tomura, M., Kanagawa, O., Fujii, S.-I. & Tanaka, M. CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity 34, 85–95 (2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6560
http://www.researchsea.com

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>