Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giving tumor vaccines a proper introduction

11.04.2011
Therapies that target specialized cells residing within the lymph nodes may help to rally tumor-killing immune responses

Given how effectively the immune system can eliminate foreign threats such bacteria and viruses, hopes are high for the development of strategies that might turn these same defense mechanisms against cancerous targets.

However, attempts to train the immune system to recognize malignancies via the intravenous injection of vaccines that present tumor-derived antigens have fallen short.

According to Kenichi Asano, a researcher with Masato Tanaka’s group at the RIKEN Center for Allergy and Immunology in Yokohama, this is the result of ‘tolerance’ mechanisms that protect against autoimmune disease. “Billions of cells die every day, and cell corpses must be removed swiftly from our body in order not to induce detrimental effects,” he says. In this scenario, macrophage cells in the spleen clean house by devouring such debris in a process known as phagocytosis, thereby preventing dead cells from triggering an inflammatory response.

Tumor cells delivered into the lymphatic system via subcutaneous injection, however, can successfully elicit a strong immune response, and new research from Asano and colleagues explains why this is the case[1]. In order to rouse an effective reaction, phagocytic cells must present recognizable chunks of those dead cells to tumor-killing cytotoxic T lymphocytes (CTLs). The researchers identified a very specific subset of macrophages within the lymph nodes that perform this task.

Intriguingly, these cells, which are distinguishable by their expression of the cell-surface protein CD169, are non-migratory and reside stably within the sinuses of the lymph node, awaiting their prey like spiders in a web. Dead cancer cells delivered to these sinuses via the lymphatic system are rapidly digested by the macrophages (Fig. 1), which in turn cross-present the resulting antigens to CTLs. By selectively killing off these macrophages with diphtheria toxin, the researchers were able to essentially disable the immune response. “Without CD169 macrophages, tumor-directed T cells were no longer activated—that means these cells dominate anti-tumor immunity after tumor cell death,” says Asano.

These findings help explain why the dead cells that slough off of tumors into the lymphatic system during radiation or chemotherapy are sometimes sufficient to provoke an immune response, and could provide the foundation for far more effective cancer immunotherapy strategies. “I believe it is very promising to mount anti-tumor immunity in patients with solid tumors by delivering tumor antigens specifically to CD169 macrophages,” says Asano. “It's my dream to invent artificial materials that possess the characteristics of dead cells and are safe for administration to patients.”

The corresponding author for this highlight is based at the Laboratory for Innate Cellular Immunity, RIKEN Research Center for Allergy and Immunology

Journal information

[1] Asano, K., Nabeyama, A., Miyake, Y., Qiu, C.-H., Kurita, A., Tomura, M., Kanagawa, O., Fujii, S.-I. & Tanaka, M. CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity 34, 85–95 (2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6560
http://www.researchsea.com

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>