Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant panda genome reveals new insights into the bear's bamboo diet

18.02.2010
A Chinese-led team including international researchers with a scientist from Cardiff University, has shed new light on some of the giant panda's unusual biological traits, including its famously restricted diet.

The team has successfully sequenced the panda genome for the first time and now, the genetic insights gleaned from the work may aid conservation efforts for the endangered species.

Giant pandas are known for their bamboo diet but the researchers discovered that the animal actually lacks the genes necessary for compete digestion of this staple food source.

Professor Mike Bruford, Cardiff School of Biosciences, worked on the study as part of an ongoing collaboration with the Chinese Academy of Sciences, Institute of Zoology, funded by the Royal Society.

He said: "The panda is a true bear and is a carnivore, so it possesses the genes necessary for being a meat-eater and yet its diet is almost exclusively herbivorous. This may suggest that it relies on microbes in its gut to digest bamboo rather than on anything in its genetic make-up.

"Taste is also important when it comes to the development of dietary habits and the sequencers discovered mutations in the panda's T1R1 gene which may affect its ability to taste meat, one possible explanation for why a potential carnivore would rely on a strict bamboo diet."

The study found no signs of low variation that is usually linked to inbreeding and results support the potential for successful survival despite the small population size of the species.

In spite of the panda's low reproduction rates, the study also identified nearly all the reproduction genes critical for mammalian gonad function and development.

Discussing the study, Professor Bruford said "The panda is at high risk of extinction, with current estimates putting total population figures at less than 3,000. The study gives us a fuller understanding of the genetic basis of the panda's biology, and will contribute to disease control and conservation efforts."

"Sequencing mammalian genomes also undoubtedly helps our ability to annotate the human genome. A major limitation to this has always been the prohibitive costs involved in the process but the study used a short-read technology that can generate genome draft sequences in a very cost-effective manner.

"This will have far-reaching implications for promoting future genome sequencing of non-model organisms."

The study, 'the sequence and de novo assembly of the giant panda genome', has been published by Nature and a full copy of the paper is available online at: http://www.nature.com/nature/journal/v463/n7279/full/nature08696.html

For further information or to arrange an interview:

Professor Mike Bruford
School of Biosciences
Cardiff University
029 2087 4312
Email: BrufordMW@cardiff.ac.uk
Jessica Kelly
Public Relations Office
Cardiff University
029 2087 0298
Email: KellyJA@cardiff.ac.uk
Notes to editors:
Cardiff School of Biosciences
Cardiff's School of Biosciences holds a world-leading reputation, addressing major questions which face health and life scientists. In 2007, one of its members, Professor Sir Martin Evans, was awarded the Nobel Prize for Medicine for his ground-breaking discovery of stem cells. Professor Sir Martin has helped build a strong research base in stem cell research and regenerative medicine at the School. Other major research areas include biodiversity and ecology, with significant discoveries about some of the world's most endangered species. The School also houses the Common Cold Centre, the world's only centre dedicated to flu and the common cold. The School has achieved top gradings in national, independent ratings of its teaching of biology, biochemistry, anatomy and physiology, and its pre-clinical training for doctors and dentists. It also has an extensive programme of public engagement, so that the NHS, industry and the general public can learn more about its research.

Professor Mike Bruford | EurekAlert!
Further information:
http://www.cardiff.ac.uk

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>