Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Giant panda genome reveals new insights into the bear's bamboo diet

A Chinese-led team including international researchers with a scientist from Cardiff University, has shed new light on some of the giant panda's unusual biological traits, including its famously restricted diet.

The team has successfully sequenced the panda genome for the first time and now, the genetic insights gleaned from the work may aid conservation efforts for the endangered species.

Giant pandas are known for their bamboo diet but the researchers discovered that the animal actually lacks the genes necessary for compete digestion of this staple food source.

Professor Mike Bruford, Cardiff School of Biosciences, worked on the study as part of an ongoing collaboration with the Chinese Academy of Sciences, Institute of Zoology, funded by the Royal Society.

He said: "The panda is a true bear and is a carnivore, so it possesses the genes necessary for being a meat-eater and yet its diet is almost exclusively herbivorous. This may suggest that it relies on microbes in its gut to digest bamboo rather than on anything in its genetic make-up.

"Taste is also important when it comes to the development of dietary habits and the sequencers discovered mutations in the panda's T1R1 gene which may affect its ability to taste meat, one possible explanation for why a potential carnivore would rely on a strict bamboo diet."

The study found no signs of low variation that is usually linked to inbreeding and results support the potential for successful survival despite the small population size of the species.

In spite of the panda's low reproduction rates, the study also identified nearly all the reproduction genes critical for mammalian gonad function and development.

Discussing the study, Professor Bruford said "The panda is at high risk of extinction, with current estimates putting total population figures at less than 3,000. The study gives us a fuller understanding of the genetic basis of the panda's biology, and will contribute to disease control and conservation efforts."

"Sequencing mammalian genomes also undoubtedly helps our ability to annotate the human genome. A major limitation to this has always been the prohibitive costs involved in the process but the study used a short-read technology that can generate genome draft sequences in a very cost-effective manner.

"This will have far-reaching implications for promoting future genome sequencing of non-model organisms."

The study, 'the sequence and de novo assembly of the giant panda genome', has been published by Nature and a full copy of the paper is available online at:

For further information or to arrange an interview:

Professor Mike Bruford
School of Biosciences
Cardiff University
029 2087 4312
Jessica Kelly
Public Relations Office
Cardiff University
029 2087 0298
Notes to editors:
Cardiff School of Biosciences
Cardiff's School of Biosciences holds a world-leading reputation, addressing major questions which face health and life scientists. In 2007, one of its members, Professor Sir Martin Evans, was awarded the Nobel Prize for Medicine for his ground-breaking discovery of stem cells. Professor Sir Martin has helped build a strong research base in stem cell research and regenerative medicine at the School. Other major research areas include biodiversity and ecology, with significant discoveries about some of the world's most endangered species. The School also houses the Common Cold Centre, the world's only centre dedicated to flu and the common cold. The School has achieved top gradings in national, independent ratings of its teaching of biology, biochemistry, anatomy and physiology, and its pre-clinical training for doctors and dentists. It also has an extensive programme of public engagement, so that the NHS, industry and the general public can learn more about its research.

Professor Mike Bruford | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>