Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Germany launches a 16M€ epigenome program in the frame of the International Human Epigenome Consortium IHEC

28.08.2012
The German Ministry for Research and Education (BMBF) will support the German epigenome program initiative “DEEP” with a budget of 16M€ over 5 years.

DEEP will be the official German contribution to the world wide operating International Human Epigenome Consortium (IHEC). The DEEP program will be coordinated by Prof. Dr. Jörn Walter, Saarland University.

DEEP forms a network of 21 German expert groups for interdisciplinary epigenome research. DEEP will generate 70 reference epigenome maps of major primary cell/tissue types in normal and diseased states exclusively using NGS technologies. The scientific program focusses on metabolic and inflammatory diseases such as adipositas, fatty liver disease, bowel disease and rheumatic arthritis. DEEP combines strong experimental and bioinformatics expertise in epigenomics.

The goal is to generate high quality reference epigenomes which will be deposited in public repositories coordinated by IHEC. The DEEP epigenome program will be flanked by functional model studies using mouse and human cell systems. This combined program will produce new functional insights in the molecular processes of complex systemic diseases.

The partners in DEEP are: Deutsches Krebsforschungszentrum Heidelberg, Deutsches Rheumaforschungs-Zentrum Berlin, EURICE – European Research and Project Office GmbH , IFADO Dortmund, Institut für Arbeitsmedizin Dortmund, Max-Delbrück-Centrum Berlin, Max-Planck-Institut für Immunologie und Epigenetik Freiburg, Max-Planck-Institut für Informatik Saarbrücken, Max-Planck-Institut für molekulare Genetik Berlin, Quiagen AG Hilden, Sanofi-Aventis Höchst, Universität Duisburg-Essen, Universität Kiel, Universität Münster, Universität Regensburg, Universität des Saarlandes.

For further information, please contact:
Professor Dr. Jörn Walter
Phone: +49 681 3024367
E-Mail: j.walter@mx.uni-saarland.de

Thorsten Mohr | Universität des Saarlandes
Further information:
http://www.uni-saarland.de

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>