Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geographic Isolation Drives the Evolution of a Hot Springs Microbe

02.06.2009
Sulfolobus islandicus, a microbe that can live in boiling acid, is offering up its secrets to researchers hardy enough to capture it from the volcanic hot springs where it thrives. In a new study, researchers report that populations of S. islandicus are more diverse than previously thought, and that their diversity is driven largely by geographic isolation.

The findings open a new window on microbial evolution, demonstrating for the first time that geography can trump other factors that influence the makeup of genes an organism hosts.

S. islandicus belongs to the archaea, a group of single-celled organisms that live in a variety of habitats including some of the most forbidding environments on the planet. Once lumped together with bacteria, archaea are now classified as a separate domain of life.

“Archaea are really different from bacteria – as different from bacteria as we are,” said University of Illinois microbiology professor Rachel Whitaker, who led the study.

Whitaker has spent almost a decade studying the genetic characteristics of
S. islandicus. The new study, in the Proceedings of the National Academy of Sciences, compares three populations of S. islandicus, from hot springs in Yellowstone National Park, Lassen National Park in California and the Mutnovsky Volcano on the Kamchatka Peninsula, in eastern Russia.

The extreme physical needs of S. islandicus make it an ideal organism for studying the impact of geographic isolation. It can live only at temperatures that approach the boiling point of water and in an environment that has the pH of battery acid. It breathes oxygen, eats volcanic gases and expels sulfuric acid. It is unlikely that it can survive even a short distance from the hot springs where it is found.

By comparing the genetic characteristics of individuals from each of the three locations, Whitaker and her colleagues were able to see how each of the S. islandicus populations had evolved since they were isolated from one another more than 900,000 years ago.

The complete genetic package, or genome, of S. islandicus contains a set of core genes that are shared among all members of this group, with some minor differences in the sequence of nucleotides that spell out individual genes. But it also contains a variable genome, with groups of genes that differ – sometimes dramatically – from one subset, or strain, to another.

Whitaker’s team found that the variable genome in individual strains of
S. islandicus is evolving at a rapid rate, with high levels of variation even between two or three individuals in the same location.

“Some people think that these variable genes are the way that microbes are adapting to new environments,” Whitaker said. “You land in a new place, you need a new function in that new place, you pick up that set of genes from whoever’s there or we don’t know who from, and now you can survive there. We have shown that does not occur.”

“This tells you that there’s a lot more diversity than we thought,” Whitaker said. “Each hot spring region has its own genome and its own genome components and is evolving in its own unique way. And if each place is evolving in its own unique way, then each one is different and there’s this amazing diversity. I mean, beetles are nothing compared to the diversity of microbes.”

Archaea, like bacteria, can transfer genes to one another, but they also obtain new genes from free-floating genetic elements, called plasmids, or from viruses that infect the cells and insert their own genes into the archaeal DNA. What did vary in the genomes of S. islandicus could be traced back to plasmids and viruses, Whitaker said. There were also a lot of lost genes, with much variation in the genes lost between the strains.

“Most of the genes that are coming and going, at least on Sulfolobus, seem to be on viruses and plasmids,” Whitaker said. The researchers found that about one-third of the variable genes were specific to a geographic location. The viruses and plasmids that had lent their genes to Sulfolobus in one site were different from those found in another. Also, much of the variation was found in genes devoted to the microbe’s immune system, indicating that S. islandicus is evolving largely in response to the assault of local pathogens such as viruses.

These findings challenge the idea that microbes draw whatever they may need from a near-universal pool of available genetic material, Whitaker said. It appears instead that S. islandicus, at least, acquires new genes from a very limited genetic reservoir stored in viruses and other genetic elements that are constrained to each geographic location on Earth.

Diana Yates | Newswise Science News
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>