Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geographic Isolation Drives the Evolution of a Hot Springs Microbe

02.06.2009
Sulfolobus islandicus, a microbe that can live in boiling acid, is offering up its secrets to researchers hardy enough to capture it from the volcanic hot springs where it thrives. In a new study, researchers report that populations of S. islandicus are more diverse than previously thought, and that their diversity is driven largely by geographic isolation.

The findings open a new window on microbial evolution, demonstrating for the first time that geography can trump other factors that influence the makeup of genes an organism hosts.

S. islandicus belongs to the archaea, a group of single-celled organisms that live in a variety of habitats including some of the most forbidding environments on the planet. Once lumped together with bacteria, archaea are now classified as a separate domain of life.

“Archaea are really different from bacteria – as different from bacteria as we are,” said University of Illinois microbiology professor Rachel Whitaker, who led the study.

Whitaker has spent almost a decade studying the genetic characteristics of
S. islandicus. The new study, in the Proceedings of the National Academy of Sciences, compares three populations of S. islandicus, from hot springs in Yellowstone National Park, Lassen National Park in California and the Mutnovsky Volcano on the Kamchatka Peninsula, in eastern Russia.

The extreme physical needs of S. islandicus make it an ideal organism for studying the impact of geographic isolation. It can live only at temperatures that approach the boiling point of water and in an environment that has the pH of battery acid. It breathes oxygen, eats volcanic gases and expels sulfuric acid. It is unlikely that it can survive even a short distance from the hot springs where it is found.

By comparing the genetic characteristics of individuals from each of the three locations, Whitaker and her colleagues were able to see how each of the S. islandicus populations had evolved since they were isolated from one another more than 900,000 years ago.

The complete genetic package, or genome, of S. islandicus contains a set of core genes that are shared among all members of this group, with some minor differences in the sequence of nucleotides that spell out individual genes. But it also contains a variable genome, with groups of genes that differ – sometimes dramatically – from one subset, or strain, to another.

Whitaker’s team found that the variable genome in individual strains of
S. islandicus is evolving at a rapid rate, with high levels of variation even between two or three individuals in the same location.

“Some people think that these variable genes are the way that microbes are adapting to new environments,” Whitaker said. “You land in a new place, you need a new function in that new place, you pick up that set of genes from whoever’s there or we don’t know who from, and now you can survive there. We have shown that does not occur.”

“This tells you that there’s a lot more diversity than we thought,” Whitaker said. “Each hot spring region has its own genome and its own genome components and is evolving in its own unique way. And if each place is evolving in its own unique way, then each one is different and there’s this amazing diversity. I mean, beetles are nothing compared to the diversity of microbes.”

Archaea, like bacteria, can transfer genes to one another, but they also obtain new genes from free-floating genetic elements, called plasmids, or from viruses that infect the cells and insert their own genes into the archaeal DNA. What did vary in the genomes of S. islandicus could be traced back to plasmids and viruses, Whitaker said. There were also a lot of lost genes, with much variation in the genes lost between the strains.

“Most of the genes that are coming and going, at least on Sulfolobus, seem to be on viruses and plasmids,” Whitaker said. The researchers found that about one-third of the variable genes were specific to a geographic location. The viruses and plasmids that had lent their genes to Sulfolobus in one site were different from those found in another. Also, much of the variation was found in genes devoted to the microbe’s immune system, indicating that S. islandicus is evolving largely in response to the assault of local pathogens such as viruses.

These findings challenge the idea that microbes draw whatever they may need from a near-universal pool of available genetic material, Whitaker said. It appears instead that S. islandicus, at least, acquires new genes from a very limited genetic reservoir stored in viruses and other genetic elements that are constrained to each geographic location on Earth.

Diana Yates | Newswise Science News
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>