Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geographic Isolation Drives the Evolution of a Hot Springs Microbe

02.06.2009
Sulfolobus islandicus, a microbe that can live in boiling acid, is offering up its secrets to researchers hardy enough to capture it from the volcanic hot springs where it thrives. In a new study, researchers report that populations of S. islandicus are more diverse than previously thought, and that their diversity is driven largely by geographic isolation.

The findings open a new window on microbial evolution, demonstrating for the first time that geography can trump other factors that influence the makeup of genes an organism hosts.

S. islandicus belongs to the archaea, a group of single-celled organisms that live in a variety of habitats including some of the most forbidding environments on the planet. Once lumped together with bacteria, archaea are now classified as a separate domain of life.

“Archaea are really different from bacteria – as different from bacteria as we are,” said University of Illinois microbiology professor Rachel Whitaker, who led the study.

Whitaker has spent almost a decade studying the genetic characteristics of
S. islandicus. The new study, in the Proceedings of the National Academy of Sciences, compares three populations of S. islandicus, from hot springs in Yellowstone National Park, Lassen National Park in California and the Mutnovsky Volcano on the Kamchatka Peninsula, in eastern Russia.

The extreme physical needs of S. islandicus make it an ideal organism for studying the impact of geographic isolation. It can live only at temperatures that approach the boiling point of water and in an environment that has the pH of battery acid. It breathes oxygen, eats volcanic gases and expels sulfuric acid. It is unlikely that it can survive even a short distance from the hot springs where it is found.

By comparing the genetic characteristics of individuals from each of the three locations, Whitaker and her colleagues were able to see how each of the S. islandicus populations had evolved since they were isolated from one another more than 900,000 years ago.

The complete genetic package, or genome, of S. islandicus contains a set of core genes that are shared among all members of this group, with some minor differences in the sequence of nucleotides that spell out individual genes. But it also contains a variable genome, with groups of genes that differ – sometimes dramatically – from one subset, or strain, to another.

Whitaker’s team found that the variable genome in individual strains of
S. islandicus is evolving at a rapid rate, with high levels of variation even between two or three individuals in the same location.

“Some people think that these variable genes are the way that microbes are adapting to new environments,” Whitaker said. “You land in a new place, you need a new function in that new place, you pick up that set of genes from whoever’s there or we don’t know who from, and now you can survive there. We have shown that does not occur.”

“This tells you that there’s a lot more diversity than we thought,” Whitaker said. “Each hot spring region has its own genome and its own genome components and is evolving in its own unique way. And if each place is evolving in its own unique way, then each one is different and there’s this amazing diversity. I mean, beetles are nothing compared to the diversity of microbes.”

Archaea, like bacteria, can transfer genes to one another, but they also obtain new genes from free-floating genetic elements, called plasmids, or from viruses that infect the cells and insert their own genes into the archaeal DNA. What did vary in the genomes of S. islandicus could be traced back to plasmids and viruses, Whitaker said. There were also a lot of lost genes, with much variation in the genes lost between the strains.

“Most of the genes that are coming and going, at least on Sulfolobus, seem to be on viruses and plasmids,” Whitaker said. The researchers found that about one-third of the variable genes were specific to a geographic location. The viruses and plasmids that had lent their genes to Sulfolobus in one site were different from those found in another. Also, much of the variation was found in genes devoted to the microbe’s immune system, indicating that S. islandicus is evolving largely in response to the assault of local pathogens such as viruses.

These findings challenge the idea that microbes draw whatever they may need from a near-universal pool of available genetic material, Whitaker said. It appears instead that S. islandicus, at least, acquires new genes from a very limited genetic reservoir stored in viruses and other genetic elements that are constrained to each geographic location on Earth.

Diana Yates | Newswise Science News
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>