Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genomic test can personalize breast cancer treatment

11.02.2009
A set of 50 genes can be used to reliably identify the four known types of breast cancer, according to research conducted at Washington University School of Medicine in St. Louis and collaborating institutions. Using this 50-gene set, oncologists can potentially predict the most effective therapy for each breast tumor type and thereby personalize breast cancer treatment for all patients.

"Unlike a widely used genomic test that applies only to lymph-node negative, estrogen-receptor positive breast cancer, this new genomic test is broadly applicable for all women diagnosed with breast cancer," says breast cancer specialist Matthew Ellis, M.D., Ph.D., a member of the Siteman Cancer Center at Barnes-Jewish Hospital and Washington University.

The study was reported Feb. 9, 2009, through advance online publication in the Journal of Clinical Oncology. Ellis' collaborators include co-authors Charles Perou, Ph.D., associate professor of genetics and pathology at the University of North Carolina at Chapel Hill School of Medicine, Philip S. Bernard, M.D., assistant professor of pathology and medical director of the molecular pathology laboratory at the University of Utah Huntsman Cancer Institute, and Torsten Nielsen, M.D., Ph.D., assistant professor of pathology and laboratory medicine at the University of British Columbia.

Breast cancer results from genetic abnormalities in breast tissue, but not all breast cancers have identical genetic alterations. Ellis and his colleagues analyzed the gene activity of more than 1,000 breast tumors to identify and validate the genetic signature of each of the four types of breast cancer. Although the cancer types are distinguished by thousands of genetic differences, the researchers were able to narrow the list down to a set of 50 of these genes that could uniquely identify each type.

These tumor types have been previously defined and are known as luminal A, luminal B, HER2-enriched and basal-like. The latter three types are generally considered types with a poor prognosis. Another genomic test commonly used in clinical practice, OncotypeDX, does not identify all four tumor types.

"Our test is the first to incorporate a molecular profile for the basal-like type breast cancers," says Ellis, professor of medicine in the Division of Medical Oncology at Washington University School of Medicine. "That's important because these breast cancers are arguably the most aggressive yet the most sensitive to chemotherapy. By identifying them we can ensure they are treated adequately."

Breast cancer experts typically also identify a fifth breast cancer type known as normal-like. The 50-gene set also recognizes the normal-like type. But the researchers found that instead of being a fifth type of breast cancer, the normal-like classification is an indicator that a sample contains insufficient tumor cells to make a molecular diagnosis and that a new sample needs to be taken.

In this study, the researchers also compared the activity of the 50-gene set to how well 133 breast cancer patients responded to standard chemotherapy. They found that their genetic test was highly sensitive and very predictive for chemotherapy response. The test was more predictive than typically used clinical molecular markers such as estrogen receptor status, progesterone receptor status or HER2 gene expression status.

They found that luminal A was not sensitive to the chemotherapy, suggesting that patients with this good-prognosis type can forgo chemotherapy in favor of hormone-based therapy. They showed that among the poor-prognosis tumor types, basal-like breast cancer was the most sensitive to the chemotherapy and luminal B the least.

"Luminal B tumors are a very poor prognosis group, and none of the current conventional therapies are particularly effective against it," Ellis says. "The ability to identify luminal B tumors accurately makes it possible to develop better therapies for this type."

Ellis says more than 20 drugs are available to treat breast cancer. The researchers are now investigating how each tumor type responds to these drugs to help determine the best treatment for each. Their 50-gene set can be assayed in preserved tumor samples left over from standard diagnostic procedures, so the group plans to study tumor samples from breast cancer cases going back a decade or more. Since the patients in these cases have already been treated, the researchers can relatively quickly discover how well various therapies worked for each breast cancer type.

The genomic test technology is patented and will be distributed through University Genomics, a company co-owned by Washington University, the University of Utah and the University of North Carolina. This year University Genomics is working with Associated Regional and University Pathologists Inc., a reference laboratory at the University of Utah, to provide a site where the 50-gene test will be available. Ellis is one of the inventors of the test and holds patents for the technology described in this news release.

Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS. Supervised risk predictor of breast cancer based on intrinsic subtypes. Journal of Clinical Oncology. Feb. 9, 2009 (advance online publication).

Funding from the National Cancer Institute, the Breast Cancer Research Foundation, the Susan G. Komen Foundation, the Huntsman Cancer Institute Foundation and the ARUP Institute for Clinical and Experimental Pathology supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Siteman Cancer Center is the only federally designated Comprehensive Cancer Center within a 240-mile radius of St. Louis. Siteman Cancer Center is composed of the combined cancer research and treatment programs of Barnes-Jewish Hospital and Washington University School of Medicine. Siteman has satellite locations in West County and St. Peters, in addition to its full-service facility at Washington University Medical Center on South Kingshighway.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Tunable diamond string may hold key to quantum memory

23.05.2018 | Physics and Astronomy

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>