Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New genomic test can personalize breast cancer treatment

A set of 50 genes can be used to reliably identify the four known types of breast cancer, according to research conducted at Washington University School of Medicine in St. Louis and collaborating institutions. Using this 50-gene set, oncologists can potentially predict the most effective therapy for each breast tumor type and thereby personalize breast cancer treatment for all patients.

"Unlike a widely used genomic test that applies only to lymph-node negative, estrogen-receptor positive breast cancer, this new genomic test is broadly applicable for all women diagnosed with breast cancer," says breast cancer specialist Matthew Ellis, M.D., Ph.D., a member of the Siteman Cancer Center at Barnes-Jewish Hospital and Washington University.

The study was reported Feb. 9, 2009, through advance online publication in the Journal of Clinical Oncology. Ellis' collaborators include co-authors Charles Perou, Ph.D., associate professor of genetics and pathology at the University of North Carolina at Chapel Hill School of Medicine, Philip S. Bernard, M.D., assistant professor of pathology and medical director of the molecular pathology laboratory at the University of Utah Huntsman Cancer Institute, and Torsten Nielsen, M.D., Ph.D., assistant professor of pathology and laboratory medicine at the University of British Columbia.

Breast cancer results from genetic abnormalities in breast tissue, but not all breast cancers have identical genetic alterations. Ellis and his colleagues analyzed the gene activity of more than 1,000 breast tumors to identify and validate the genetic signature of each of the four types of breast cancer. Although the cancer types are distinguished by thousands of genetic differences, the researchers were able to narrow the list down to a set of 50 of these genes that could uniquely identify each type.

These tumor types have been previously defined and are known as luminal A, luminal B, HER2-enriched and basal-like. The latter three types are generally considered types with a poor prognosis. Another genomic test commonly used in clinical practice, OncotypeDX, does not identify all four tumor types.

"Our test is the first to incorporate a molecular profile for the basal-like type breast cancers," says Ellis, professor of medicine in the Division of Medical Oncology at Washington University School of Medicine. "That's important because these breast cancers are arguably the most aggressive yet the most sensitive to chemotherapy. By identifying them we can ensure they are treated adequately."

Breast cancer experts typically also identify a fifth breast cancer type known as normal-like. The 50-gene set also recognizes the normal-like type. But the researchers found that instead of being a fifth type of breast cancer, the normal-like classification is an indicator that a sample contains insufficient tumor cells to make a molecular diagnosis and that a new sample needs to be taken.

In this study, the researchers also compared the activity of the 50-gene set to how well 133 breast cancer patients responded to standard chemotherapy. They found that their genetic test was highly sensitive and very predictive for chemotherapy response. The test was more predictive than typically used clinical molecular markers such as estrogen receptor status, progesterone receptor status or HER2 gene expression status.

They found that luminal A was not sensitive to the chemotherapy, suggesting that patients with this good-prognosis type can forgo chemotherapy in favor of hormone-based therapy. They showed that among the poor-prognosis tumor types, basal-like breast cancer was the most sensitive to the chemotherapy and luminal B the least.

"Luminal B tumors are a very poor prognosis group, and none of the current conventional therapies are particularly effective against it," Ellis says. "The ability to identify luminal B tumors accurately makes it possible to develop better therapies for this type."

Ellis says more than 20 drugs are available to treat breast cancer. The researchers are now investigating how each tumor type responds to these drugs to help determine the best treatment for each. Their 50-gene set can be assayed in preserved tumor samples left over from standard diagnostic procedures, so the group plans to study tumor samples from breast cancer cases going back a decade or more. Since the patients in these cases have already been treated, the researchers can relatively quickly discover how well various therapies worked for each breast cancer type.

The genomic test technology is patented and will be distributed through University Genomics, a company co-owned by Washington University, the University of Utah and the University of North Carolina. This year University Genomics is working with Associated Regional and University Pathologists Inc., a reference laboratory at the University of Utah, to provide a site where the 50-gene test will be available. Ellis is one of the inventors of the test and holds patents for the technology described in this news release.

Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS. Supervised risk predictor of breast cancer based on intrinsic subtypes. Journal of Clinical Oncology. Feb. 9, 2009 (advance online publication).

Funding from the National Cancer Institute, the Breast Cancer Research Foundation, the Susan G. Komen Foundation, the Huntsman Cancer Institute Foundation and the ARUP Institute for Clinical and Experimental Pathology supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Siteman Cancer Center is the only federally designated Comprehensive Cancer Center within a 240-mile radius of St. Louis. Siteman Cancer Center is composed of the combined cancer research and treatment programs of Barnes-Jewish Hospital and Washington University School of Medicine. Siteman has satellite locations in West County and St. Peters, in addition to its full-service facility at Washington University Medical Center on South Kingshighway.

Gwen Ericson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>