Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic Study Yields Plausible Cause Of Colony Collapse Disorder

25.08.2009
Researchers report this week that they have found a surprising but reliable marker of colony collapse disorder, a baffling malady that in 2007-2008 killed off more than a third of commercial honey bees in the U.S.

Their study, in the Proceedings of the National Academy of Sciences, is the first to identify a single, objective molecular marker of the disorder, and to propose a data-driven hypothesis to explain the mysterious disappearance of American honey bees. The team included researchers from the University of Illinois and the U.S. Department of Agriculture.

U. of I. researchers spearheaded the honey bee genome project, which was completed in October 2006, less than a month before the first reports of colony collapse disorder (CCD) began to circulate. The new study made use of the genome and a genome-based tool, the microarray, to look for differences in gene expression in the guts of healthy honey bees and in those from hives afflicted by CCD.

Such microarray analyses normally identify only active genes - those that have been transcribed into messenger RNA in the first stage of building proteins. But Reed Johnson, a University of Illinois doctoral student in entomology and first author on the study, noticed that the microarrays were turning up large quantities of fragmented ribosomal RNA (rRNA) in the bees affected by CCD. Ribosomes are the factories in which proteins are made, but Johnson observed that this rRNA contained adenosine-rich sequences not seen in normal ribosomes. Such "polyadenylation" is believed to be a sign of ribosome degradation.

"Microarrays for other organisms also contain these mysterious pieces of ribosomal RNA, for reasons that are not yet altogether clear," said entomology and neuroscience professor Gene Robinson, a co-principal investigator on the study with entomology professor and department head May Berenbaum. But comparisons of healthy bees and bees from hives afflicted with CCD showed that the fragments were present at a much higher frequency in the CCD bees, he said.

"They are overrepresented in the CCD bees, significantly overrepresented," Berenbaum said. "The one consistent indicator of CCD across samples collected at multiple times and in multiple places was the overabundance of ribosomal fragments."

When the team looked at the pathogens of healthy bees and bees from hives affected by CCD, they saw that the CCD bees suffered "more than their share" of infections with viruses that attack the ribosome, Berenbaum said. These so-called picorna-like viruses "hijack the ribosome," she said, taking over the cellular machinery to manufacture only viral proteins. The list of picorna-like viruses that afflict honey bees is long and includes Israeli acute paralysis virus, which was once suspected of being the primary cause of CCD.

Numerous suspects have been identified in the hunt for a cause of CCD, from nutritional deficiencies to exposure to genetically modified plants or pesticides. Researchers in Spain recently pointed to a parasitic fungus, Nosema ceranae, which afflicts many CCD bees in Spain.

The loss of ribosomal function would explain many of the phenomena associated with CCD, Berenbaum said.

"If your ribosome is compromised, then you can't respond to pesticides, you can't respond to fungal infections or bacteria or inadequate nutrition because the ribosome is central to the survival of any organism. You need proteins to survive," she said.

The varroa mite, which is believed to have killed off a significant number of honey bees after it was accidentally introduced to the U.S. in 1986, is a carrier of picorna-like viruses, and is likely a significant contributor to the high viral pathogen load that afflicts U.S. bees. The mite may act as a tipping factor leading to ribosome breakdown, the researchers said.

All of these influences, along with the practice of carting bees around the country for pollination services, are significant stressors on the bees, a heavy burden that would be amplified by a loss of ribosomal function, Robinson said.

This study was supported by the USDA. Berenbaum is also an affiliate of the Institute for Genomic Biology at Illinois. Robinson directs the Neuroscience Program at Illinois and is a faculty member of IGB.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>