Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic signature of colon cancer may individualize treatment

25.11.2008
Researchers in the Duke Institute for Genome Sciences & Policy have developed a model for predicting risk of recurrence in early stage colon cancer patients, and have used the model to also predict sensitivity to chemotherapy and targeted therapy regimens.

"These findings have important implications for individualizing therapy," said Katherine Garman, M.D., a gastroenterology fellow at Duke and lead investigator on the study. "By examining gene expression in early-stage colon cancer tumors, we have found certain patterns that seem to put some patients at higher risk for recurrence. By identifying these patients up front, we may be able to treat them in a targeted and proactive manner to prevent this recurrence and help them live longer and healthier lives."

The findings are due to appear in the online edition of the Proceedings of the National Academy of Sciences, between November 24 and November 26, 2008. The study was funded by the Emilene Brown Cancer Research Fund and the National Institutes of Health.

The researchers studied gene expression data from 52 samples of early stage colon cancer tumors, looking for patterns. Then they correlated the gene expression patterns with patient progress reports to track the recurrence of cancer. The predictive power of the correlations was subsequently tested in two independent data sets from 55 and 73 tumors, respectively.

"In our small dataset, we were able to predict which tumors were at risk for recurring, with 90 percent accuracy," Garman said.

In collaboration with colon cancer specialist David Hsu, M.D., the researchers then took their study one very significant step further, using the data garnered about gene expression and prognosis to examine response to several different types of therapy.

"Importantly, we found that the traditional chemotherapy given to patients with colon cancer varies considerably in its ability to treat tumors with a high likelihood of cancer recurrence," Garman said. "Using the gene-expression data to guide us, we then identified several other drugs and tested those drugs in our samples. The drugs chosen were novel targeted therapies and anti-inflammatory agents that go after certain cancer cell pathways and had been previously shown to alter colon cancer biology."

"Two of the drugs we tested seemed to cause significant changes in tumor biology in a laboratory dish, effectively making a high-recurrence-risk tumor into a low-recurrence-risk tumor by altering the genetic makeup," Garman said. "These therapies would need to be tested further in a clinical trial."

Conventional methods of characterizing tumors currently rely on pathological information such as tumor size, lymph node involvement and degree of metastasis, Garman said. Doctors use these kinds of clinical data to determine whether an early stage colon cancer patient receives chemotherapy after surgery, and if so, what type.

"Integration of genomic and genetic markers will revolutionize the way we care for patients," Garman said.

"This is a perfect example of how science can change the way cancer care is practiced," said Anil Potti, M.D., a researcher in the Duke Institute for Genome Sciences & Policy and senior investigator on this study. "We hope that advances such as this will individualize the treatment plans for patients with colon cancer and improve survival."

About 150,000 people are diagnosed with colorectal cancer each year in the United States and almost 50,000 are expected to die of the disease in 2008. Up to 30 percent of patients diagnosed with early stage colon cancer can go on to experience recurrences despite initial cure with surgery and chemotherapy when indicated.

Lauren Shaftel Williams | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>