Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genomic signature of colon cancer may individualize treatment

Researchers in the Duke Institute for Genome Sciences & Policy have developed a model for predicting risk of recurrence in early stage colon cancer patients, and have used the model to also predict sensitivity to chemotherapy and targeted therapy regimens.

"These findings have important implications for individualizing therapy," said Katherine Garman, M.D., a gastroenterology fellow at Duke and lead investigator on the study. "By examining gene expression in early-stage colon cancer tumors, we have found certain patterns that seem to put some patients at higher risk for recurrence. By identifying these patients up front, we may be able to treat them in a targeted and proactive manner to prevent this recurrence and help them live longer and healthier lives."

The findings are due to appear in the online edition of the Proceedings of the National Academy of Sciences, between November 24 and November 26, 2008. The study was funded by the Emilene Brown Cancer Research Fund and the National Institutes of Health.

The researchers studied gene expression data from 52 samples of early stage colon cancer tumors, looking for patterns. Then they correlated the gene expression patterns with patient progress reports to track the recurrence of cancer. The predictive power of the correlations was subsequently tested in two independent data sets from 55 and 73 tumors, respectively.

"In our small dataset, we were able to predict which tumors were at risk for recurring, with 90 percent accuracy," Garman said.

In collaboration with colon cancer specialist David Hsu, M.D., the researchers then took their study one very significant step further, using the data garnered about gene expression and prognosis to examine response to several different types of therapy.

"Importantly, we found that the traditional chemotherapy given to patients with colon cancer varies considerably in its ability to treat tumors with a high likelihood of cancer recurrence," Garman said. "Using the gene-expression data to guide us, we then identified several other drugs and tested those drugs in our samples. The drugs chosen were novel targeted therapies and anti-inflammatory agents that go after certain cancer cell pathways and had been previously shown to alter colon cancer biology."

"Two of the drugs we tested seemed to cause significant changes in tumor biology in a laboratory dish, effectively making a high-recurrence-risk tumor into a low-recurrence-risk tumor by altering the genetic makeup," Garman said. "These therapies would need to be tested further in a clinical trial."

Conventional methods of characterizing tumors currently rely on pathological information such as tumor size, lymph node involvement and degree of metastasis, Garman said. Doctors use these kinds of clinical data to determine whether an early stage colon cancer patient receives chemotherapy after surgery, and if so, what type.

"Integration of genomic and genetic markers will revolutionize the way we care for patients," Garman said.

"This is a perfect example of how science can change the way cancer care is practiced," said Anil Potti, M.D., a researcher in the Duke Institute for Genome Sciences & Policy and senior investigator on this study. "We hope that advances such as this will individualize the treatment plans for patients with colon cancer and improve survival."

About 150,000 people are diagnosed with colorectal cancer each year in the United States and almost 50,000 are expected to die of the disease in 2008. Up to 30 percent of patients diagnosed with early stage colon cancer can go on to experience recurrences despite initial cure with surgery and chemotherapy when indicated.

Lauren Shaftel Williams | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>