Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic signature of colon cancer may individualize treatment

25.11.2008
Researchers in the Duke Institute for Genome Sciences & Policy have developed a model for predicting risk of recurrence in early stage colon cancer patients, and have used the model to also predict sensitivity to chemotherapy and targeted therapy regimens.

"These findings have important implications for individualizing therapy," said Katherine Garman, M.D., a gastroenterology fellow at Duke and lead investigator on the study. "By examining gene expression in early-stage colon cancer tumors, we have found certain patterns that seem to put some patients at higher risk for recurrence. By identifying these patients up front, we may be able to treat them in a targeted and proactive manner to prevent this recurrence and help them live longer and healthier lives."

The findings are due to appear in the online edition of the Proceedings of the National Academy of Sciences, between November 24 and November 26, 2008. The study was funded by the Emilene Brown Cancer Research Fund and the National Institutes of Health.

The researchers studied gene expression data from 52 samples of early stage colon cancer tumors, looking for patterns. Then they correlated the gene expression patterns with patient progress reports to track the recurrence of cancer. The predictive power of the correlations was subsequently tested in two independent data sets from 55 and 73 tumors, respectively.

"In our small dataset, we were able to predict which tumors were at risk for recurring, with 90 percent accuracy," Garman said.

In collaboration with colon cancer specialist David Hsu, M.D., the researchers then took their study one very significant step further, using the data garnered about gene expression and prognosis to examine response to several different types of therapy.

"Importantly, we found that the traditional chemotherapy given to patients with colon cancer varies considerably in its ability to treat tumors with a high likelihood of cancer recurrence," Garman said. "Using the gene-expression data to guide us, we then identified several other drugs and tested those drugs in our samples. The drugs chosen were novel targeted therapies and anti-inflammatory agents that go after certain cancer cell pathways and had been previously shown to alter colon cancer biology."

"Two of the drugs we tested seemed to cause significant changes in tumor biology in a laboratory dish, effectively making a high-recurrence-risk tumor into a low-recurrence-risk tumor by altering the genetic makeup," Garman said. "These therapies would need to be tested further in a clinical trial."

Conventional methods of characterizing tumors currently rely on pathological information such as tumor size, lymph node involvement and degree of metastasis, Garman said. Doctors use these kinds of clinical data to determine whether an early stage colon cancer patient receives chemotherapy after surgery, and if so, what type.

"Integration of genomic and genetic markers will revolutionize the way we care for patients," Garman said.

"This is a perfect example of how science can change the way cancer care is practiced," said Anil Potti, M.D., a researcher in the Duke Institute for Genome Sciences & Policy and senior investigator on this study. "We hope that advances such as this will individualize the treatment plans for patients with colon cancer and improve survival."

About 150,000 people are diagnosed with colorectal cancer each year in the United States and almost 50,000 are expected to die of the disease in 2008. Up to 30 percent of patients diagnosed with early stage colon cancer can go on to experience recurrences despite initial cure with surgery and chemotherapy when indicated.

Lauren Shaftel Williams | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>