Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Following the genomic pathways to stop the spread of cancer

As the Genetics Society of America's Model Organism to Human Biology (MOHB): Cancer Genetics Meeting in Washington, D.C. drew to a close, it was clear that the mantra for drug discovery to treat cancers in the post-genomic era is pathways.

Pathways are ordered series of actions that occur as cells move from one state, through a series of intermediate states, to a final action. Because model organisms – fruit flies, roundworms, yeast, zebrafish and others – are related to humans, they share many of the same pathways, but in systems that are much easier to study. Focusing on pathways in model organisms can therefore reveal new drug targets that may be useful in treating human disease.

"By reading evolution's notes, we can discover what really matters in the genome," keynote speaker Eric Lander, Ph.D., founding director of the Broad Institute of Harvard and MIT and professor of biology at MIT, told a packed crowd at the MOHB: Cancer Genetics Meeting on June 19.

What matters the most in the genome of a cancer cell may be the seeds of drug resistance, the genetic changes that enable cells to evade our best drugs. Bert Vogelstein, M.D., director of the Ludwig Center at Johns Hopkins University and an investigator with the Howard Hughes Medical Institute and a keynote speaker on June 17, told participants. He called drug resistance to single agents a "fait accompli," or a done deal as a side effect of the evolution of cancer.

"About 3,000 resistant cells are present in every visible metastasis," said Dr. Vogelstein. "That's why we see resistance with all therapeutics, even when they work. And we can't get around it with single agents. Cancer treatment requires combinations of agents."

Presentations throughout the meeting offered specific examples of events in pathways involved in the progression of cancer in model organisms that shed light on how human cancer may metastasize.

To identify the genes behind a breast cancer's spread to the lungs, Joan Massagué, Ph.D., chair of the Cancer Biology & Genetics Program at Memorial Sloan-Kettering Cancer Center and colleagues, placed cells from the lung fluid of patients into mice, deducing a "breast cancer lung metastasis signature" and identifying several mediators of metastasis that are clinically relevant and potential drug targets.

Denise Montell, Ph.D., from Johns Hopkins University School of Medicine, traced the signaling pathways that developing egg cells in the Drosophila (fruit fly) ovary use to migrate as using some of the same genes that are expressed as ovarian cancer spreads.

David Botstein, Ph.D., and his group at Princeton University use yeast to model the evolution of cancer through serial mutations, revealing that only a few destinations for a particular type of cancer are possible. "Breast cancers can't turn into leukemias, There are limited subtypes, not just anything can happen," he explained.

David Q. Matus, Ph.D., a postdoctoral researcher at Duke University, discussed an in vivo model of cell invasion, a key component of cancer metastasis that occurs during the larval development of the roundworm, Caenorhabditis elegans. He showed that the invasive gonadal anchor cell needs to exit the cell cycle, (be non-dividing), in order to invade. Proliferative anchor cells fail to form "invadopodia" -- invasive feet or protrusions in the basement membrane -- suggesting that cell division and cell invasion are disparate states.

The tumor suppressor "drivers" – those genes that reduce the probability of a cell turning into a cancer cell -- are often deletions -- part of a chromosome or a sequence of DNA that is missing. But, a drug can't target proteins encoded by such sequences. The solution? Understand and interrogate pathways. "For every mutated tumor suppressor gene that inactivates a component of a pathway, another gene is indirectly activated," Dr. Vogelstein explained. We need model organisms to dissect the pathways that will underlie future combination therapies, he concluded.

ABOUT THE MODEL ORGANISM TO HUMAN BIOLOGY MEETING: The GSA MOHB Meeting has been held every other year since 2006. The GSA Board of Directors developed this meeting to enable basic research scientists studying genetic diseases in model organisms and scientists studying these diseases in humans to have a forum for discussion of their findings and to forge collaborative investigations.

ABOUT GSA: Founded in 1931, the Genetics Society of America (GSA) is the professional membership organization for scientific researchers, educators, bioengineers, bioinformaticians and others interested in the field of genetics. Its nearly 5,000 members work to advance knowledge in the basic mechanisms of inheritance, from the molecular to the population level. GSA is dedicated to promoting research in genetics and to facilitating communication among geneticists worldwide through its conferences, including the biennial conference on Model Organisms to Human Biology, an interdisciplinary meeting on current and cutting edge topics in genetics research, as well as annual and biennial meetings that focus on the genetics of particular organisms, including C. elegans, Drosophila, fungi, mice, yeast, and zebrafish. GSA publishes GENETICS, a leading journal in the field and an online, open-access journal, G3: Genes|Genomes|Genetics. For more information about GSA, please visit Also follow GSA on Facebook at and on Twitter @GeneticsGSA.

Phyllis Edelman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>