Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomes reveal bacterial lifestyles: Research

09.09.2009
Sampling just a few genes can reveal not only the "lifestyle" of marine microbes but of their entire environments, new research suggests.

The finding means researchers may be able to predict the types of microbes that thrive in specific marine environments by sampling the genomes of just a few dominant species, according to research co-author Rick Cavicchioli of the University of New South Wales. As well, it may reveal new insights into the impacts of climate change on biodiversity in the world's oceans.

"It's a bit like using the DNA from a single hair at a crime scene to discover the identity of the perpetrator," says Professor Cavicchioli. "What we've learned here is that a few genes can tell us a much about the nature of the environment that species come from and what influences them to evolve in a specific way."

With other UNSW and US colleagues, Professor Cavicchioli compared the genomes of two common ocean bacteria that employ different strategies for living: one lives in nutrient-rich waters and is fast to grow and replicate itself, and another lives in poor-nutrient waters, and grows more slowly. The findings are published in the Proceedings of the National Academy of Sciences.

The comparison revealed genetic differences that reflect the different lifestyles of the two species: the bacteria from the nutrient-rich waters have many selective transporter proteins to quickly absorb plentiful nutrients while those from nutrient-poor waters have a smaller number of highly efficient transporter proteins to extract what little nutrition is available.

Differences in other genes were also identified concerning nutrient and energy usage and resistance to infecting viruses, which reflect the bacteria's adaptations to their environment. Armed with such knowledge from a few key genes, it should be possible to predict what sort of environment an individual species evolved in, says Professor Cavicchioli. Better still, sampling the genomes of a small number of species should enable scientists to gain useful new insights into the dynamics of whole marine ecosystems.

"It's not practical to sample every species in a given area so the model we have described is useful for studying the collective genomes of whole marine microbial communities – or metagenomes – to better understand how they have evolved in specific locations," he says.

"By analysing and comparing the strategies of the dominant organisms we should have an idea of the carbon flux going through the environment which will allow us to monitor the health of the marine ecosystem, including the impact of global warming," he says. "The analysis, for example, may help us predict how marine bacteria will respond to environmental changes caused by climate change, such as oceans becoming warmer or absorbing more carbon dioxide from the atmosphere and becoming more acidic."

Using their new technique to analyse 124 ocean bacteria, the researchers found that bacteria adapted to low nutrients outnumber bacteria adapted to high nutrients in worldwide samples of ocean water. This has led to an under-reporting on what is known about the biodiversity and the physiological properties of the more abundant bacteria – and what secrets they may reveal about life on earth.

In addition to Professor Cavicchioli, other UNSW researchers co-authoring the PNAS paper were Prof. Staffan Kjelleberg and Drs. Federico M. Lauro, Diane McDougald, Torsten Thomas, Timothy J. Williams, Suhelen Egan, Scott Rice, Matthew Z. DeMaere, Lily Ting and Mark V. Brown.

Rick Cavicchioli | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>