Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genomes reveal bacterial lifestyles: Research

Sampling just a few genes can reveal not only the "lifestyle" of marine microbes but of their entire environments, new research suggests.

The finding means researchers may be able to predict the types of microbes that thrive in specific marine environments by sampling the genomes of just a few dominant species, according to research co-author Rick Cavicchioli of the University of New South Wales. As well, it may reveal new insights into the impacts of climate change on biodiversity in the world's oceans.

"It's a bit like using the DNA from a single hair at a crime scene to discover the identity of the perpetrator," says Professor Cavicchioli. "What we've learned here is that a few genes can tell us a much about the nature of the environment that species come from and what influences them to evolve in a specific way."

With other UNSW and US colleagues, Professor Cavicchioli compared the genomes of two common ocean bacteria that employ different strategies for living: one lives in nutrient-rich waters and is fast to grow and replicate itself, and another lives in poor-nutrient waters, and grows more slowly. The findings are published in the Proceedings of the National Academy of Sciences.

The comparison revealed genetic differences that reflect the different lifestyles of the two species: the bacteria from the nutrient-rich waters have many selective transporter proteins to quickly absorb plentiful nutrients while those from nutrient-poor waters have a smaller number of highly efficient transporter proteins to extract what little nutrition is available.

Differences in other genes were also identified concerning nutrient and energy usage and resistance to infecting viruses, which reflect the bacteria's adaptations to their environment. Armed with such knowledge from a few key genes, it should be possible to predict what sort of environment an individual species evolved in, says Professor Cavicchioli. Better still, sampling the genomes of a small number of species should enable scientists to gain useful new insights into the dynamics of whole marine ecosystems.

"It's not practical to sample every species in a given area so the model we have described is useful for studying the collective genomes of whole marine microbial communities – or metagenomes – to better understand how they have evolved in specific locations," he says.

"By analysing and comparing the strategies of the dominant organisms we should have an idea of the carbon flux going through the environment which will allow us to monitor the health of the marine ecosystem, including the impact of global warming," he says. "The analysis, for example, may help us predict how marine bacteria will respond to environmental changes caused by climate change, such as oceans becoming warmer or absorbing more carbon dioxide from the atmosphere and becoming more acidic."

Using their new technique to analyse 124 ocean bacteria, the researchers found that bacteria adapted to low nutrients outnumber bacteria adapted to high nutrients in worldwide samples of ocean water. This has led to an under-reporting on what is known about the biodiversity and the physiological properties of the more abundant bacteria – and what secrets they may reveal about life on earth.

In addition to Professor Cavicchioli, other UNSW researchers co-authoring the PNAS paper were Prof. Staffan Kjelleberg and Drs. Federico M. Lauro, Diane McDougald, Torsten Thomas, Timothy J. Williams, Suhelen Egan, Scott Rice, Matthew Z. DeMaere, Lily Ting and Mark V. Brown.

Rick Cavicchioli | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>