Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomes reveal bacterial lifestyles: Research

09.09.2009
Sampling just a few genes can reveal not only the "lifestyle" of marine microbes but of their entire environments, new research suggests.

The finding means researchers may be able to predict the types of microbes that thrive in specific marine environments by sampling the genomes of just a few dominant species, according to research co-author Rick Cavicchioli of the University of New South Wales. As well, it may reveal new insights into the impacts of climate change on biodiversity in the world's oceans.

"It's a bit like using the DNA from a single hair at a crime scene to discover the identity of the perpetrator," says Professor Cavicchioli. "What we've learned here is that a few genes can tell us a much about the nature of the environment that species come from and what influences them to evolve in a specific way."

With other UNSW and US colleagues, Professor Cavicchioli compared the genomes of two common ocean bacteria that employ different strategies for living: one lives in nutrient-rich waters and is fast to grow and replicate itself, and another lives in poor-nutrient waters, and grows more slowly. The findings are published in the Proceedings of the National Academy of Sciences.

The comparison revealed genetic differences that reflect the different lifestyles of the two species: the bacteria from the nutrient-rich waters have many selective transporter proteins to quickly absorb plentiful nutrients while those from nutrient-poor waters have a smaller number of highly efficient transporter proteins to extract what little nutrition is available.

Differences in other genes were also identified concerning nutrient and energy usage and resistance to infecting viruses, which reflect the bacteria's adaptations to their environment. Armed with such knowledge from a few key genes, it should be possible to predict what sort of environment an individual species evolved in, says Professor Cavicchioli. Better still, sampling the genomes of a small number of species should enable scientists to gain useful new insights into the dynamics of whole marine ecosystems.

"It's not practical to sample every species in a given area so the model we have described is useful for studying the collective genomes of whole marine microbial communities – or metagenomes – to better understand how they have evolved in specific locations," he says.

"By analysing and comparing the strategies of the dominant organisms we should have an idea of the carbon flux going through the environment which will allow us to monitor the health of the marine ecosystem, including the impact of global warming," he says. "The analysis, for example, may help us predict how marine bacteria will respond to environmental changes caused by climate change, such as oceans becoming warmer or absorbing more carbon dioxide from the atmosphere and becoming more acidic."

Using their new technique to analyse 124 ocean bacteria, the researchers found that bacteria adapted to low nutrients outnumber bacteria adapted to high nutrients in worldwide samples of ocean water. This has led to an under-reporting on what is known about the biodiversity and the physiological properties of the more abundant bacteria – and what secrets they may reveal about life on earth.

In addition to Professor Cavicchioli, other UNSW researchers co-authoring the PNAS paper were Prof. Staffan Kjelleberg and Drs. Federico M. Lauro, Diane McDougald, Torsten Thomas, Timothy J. Williams, Suhelen Egan, Scott Rice, Matthew Z. DeMaere, Lily Ting and Mark V. Brown.

Rick Cavicchioli | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>