Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome-wide hunts reveal new regulators of blood pressure

12.09.2011
Researchers discover dozens of genetic variants associated with increased risk of hypertension, stroke and other cardiovascular diseases

A study involving more than 200,000 people worldwide has identified 29 DNA sequence variations in locations across the human genome that influence blood pressure. These genes, whose sequence changes are associated with alterations in blood pressure and are linked to heart disease and stroke, were found with the help of decades' worth of population data that were pooled and analyzed by a large international consortium, including Johns Hopkins researchers.

Among the findings was evidence that the same common genetic variants associated with hypertension in European populations also are frequently found in individuals of Asian and African ancestry, according to the report that appears September 11 in Nature.

"A genetic risk score that adds up the effects of all of these variants shows that the more of these variants an individual has, the greater are his or her chances of having hypertension, left ventricular wall thickness, stroke and coronary artery disease," says Aravinda Chakravarti, Ph.D., a professor of medicine, pediatrics and molecular biology and genetics at the McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins, and one of the lead authors.

The individuals whose genomes were analyzed for this study had their blood pressures recorded when they originally entered other long-term cardiovascular research studies, and scientists used these measures to assess the predictive value of the genes and blood pressures in terms of the subjects' current cardiovascular status.

This genome-wide association study focused on systolic and diastolic blood pressures: measures of the maximum and minimum pressures exerted on the arteries. However, in a related genome-wide investigation reported September 11 in Nature Genetics, the same scientists found an additional six locations across the genome where variants affect blood pressure by focusing on two other relevant measures: pulse pressure (the difference between systolic and diastolic blood pressure) and mean arterial pressure (a weighted average of systolic and diastolic blood pressure). The group conducted a genome-wide association meta-analysis of pulse pressure and mean arterial pressure in 74,064 individuals of European ancestry from 35 studies and then followed up the results in 48,607 additional individuals.

"It's like using four different cops to find the same culprit," Chakravarti says. "The more ways we search for blood pressure genes, the better our ability to understand hypertension, whose affects are not uni-causal."

For the billion-plus people worldwide with hypertension, even small elevations in blood pressure are associated with increased risk of cardiovascular disease. Although it's generally known that hypertension has a familial component, the genetic regulatory mechanisms of blood pressure have been challenging to pin down so far, Chakravarti says, citing similar genetic studies three years ago that failed to detect any genes. He credits the recent spate of genetic discoveries – more than 300 genes for cardiovascular diseases have been identified in just the last few years – to the collective analyses of long-term prospective research efforts such as the pioneering Framingham Heart Study, begun in 1948, the Cardiovascular Heath Study, started in 1989, and the Atherosclerosis Risk in Communities (ARIC) study, started in 1987.

"Too often, people look at these studies that have a long provenance and wonder what is it doing for them today," says Chakravarti, who compares the studies to a retirement account. "Researchers visit them time and time again. Without them, this feat of genetic studies would be impossible."

Each genome-wide association study, often referred to as GWAS, reported what effects were observed at which locations on the genome in a scan of single nucleotide polymorphisms (SNPs) throughout the genome. Pronounced snips, SNPs are sites where a single letter in the DNA code is variable between humans.

"Your blood pressure is a function of these genes we just identified as well as perhaps a hundred others we haven't found yet," says Chakravarti. "By revealing the genetic architecture of blood pressure, both studies will help us to understand the biology of cardiovascular diseases and stroke, and, eventually, may lead to better therapies."

Support for the international, multi-institutional project came from many funding mechanisms, including the National Institutes of Health National Heart, Lung and Blood Institute as well as European and private funding agencies.

Of more than 230 scientists who contributed to the Nature study, Chakravarti is a corresponding author. The lead author is Georg B. Ehret, also of the institute. Other Johns Hopkins authors are Vasyl Pihur, Josef Coresh, Judith A. Hoffman-Bolton, Linda Kao, Anna Kottgen, and J.Hunter Young.

In addition to Chakravarti, Johns Hopkins scientists who contributed to the Nature Genetics study include Georg B. Ehret and Vasyl Pihur.

On the Web:
Chakravarti lab: http://chakravarti.igm.jhmi.edu/AravindaChakravartiLab/Home.html
Nature: http://www.nature.com/nature/index.html
Nature Genetics: http://www.nature.com/ng/index.html
Media Contacts: Maryalice Yakutchik; 443-287-2251; myakutc1@jhmi.edu
Audrey Huang; 410-614-5105; audrey@jhmi.edu
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>