Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome-wide hunts reveal new regulators of blood pressure

12.09.2011
Researchers discover dozens of genetic variants associated with increased risk of hypertension, stroke and other cardiovascular diseases

A study involving more than 200,000 people worldwide has identified 29 DNA sequence variations in locations across the human genome that influence blood pressure. These genes, whose sequence changes are associated with alterations in blood pressure and are linked to heart disease and stroke, were found with the help of decades' worth of population data that were pooled and analyzed by a large international consortium, including Johns Hopkins researchers.

Among the findings was evidence that the same common genetic variants associated with hypertension in European populations also are frequently found in individuals of Asian and African ancestry, according to the report that appears September 11 in Nature.

"A genetic risk score that adds up the effects of all of these variants shows that the more of these variants an individual has, the greater are his or her chances of having hypertension, left ventricular wall thickness, stroke and coronary artery disease," says Aravinda Chakravarti, Ph.D., a professor of medicine, pediatrics and molecular biology and genetics at the McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins, and one of the lead authors.

The individuals whose genomes were analyzed for this study had their blood pressures recorded when they originally entered other long-term cardiovascular research studies, and scientists used these measures to assess the predictive value of the genes and blood pressures in terms of the subjects' current cardiovascular status.

This genome-wide association study focused on systolic and diastolic blood pressures: measures of the maximum and minimum pressures exerted on the arteries. However, in a related genome-wide investigation reported September 11 in Nature Genetics, the same scientists found an additional six locations across the genome where variants affect blood pressure by focusing on two other relevant measures: pulse pressure (the difference between systolic and diastolic blood pressure) and mean arterial pressure (a weighted average of systolic and diastolic blood pressure). The group conducted a genome-wide association meta-analysis of pulse pressure and mean arterial pressure in 74,064 individuals of European ancestry from 35 studies and then followed up the results in 48,607 additional individuals.

"It's like using four different cops to find the same culprit," Chakravarti says. "The more ways we search for blood pressure genes, the better our ability to understand hypertension, whose affects are not uni-causal."

For the billion-plus people worldwide with hypertension, even small elevations in blood pressure are associated with increased risk of cardiovascular disease. Although it's generally known that hypertension has a familial component, the genetic regulatory mechanisms of blood pressure have been challenging to pin down so far, Chakravarti says, citing similar genetic studies three years ago that failed to detect any genes. He credits the recent spate of genetic discoveries – more than 300 genes for cardiovascular diseases have been identified in just the last few years – to the collective analyses of long-term prospective research efforts such as the pioneering Framingham Heart Study, begun in 1948, the Cardiovascular Heath Study, started in 1989, and the Atherosclerosis Risk in Communities (ARIC) study, started in 1987.

"Too often, people look at these studies that have a long provenance and wonder what is it doing for them today," says Chakravarti, who compares the studies to a retirement account. "Researchers visit them time and time again. Without them, this feat of genetic studies would be impossible."

Each genome-wide association study, often referred to as GWAS, reported what effects were observed at which locations on the genome in a scan of single nucleotide polymorphisms (SNPs) throughout the genome. Pronounced snips, SNPs are sites where a single letter in the DNA code is variable between humans.

"Your blood pressure is a function of these genes we just identified as well as perhaps a hundred others we haven't found yet," says Chakravarti. "By revealing the genetic architecture of blood pressure, both studies will help us to understand the biology of cardiovascular diseases and stroke, and, eventually, may lead to better therapies."

Support for the international, multi-institutional project came from many funding mechanisms, including the National Institutes of Health National Heart, Lung and Blood Institute as well as European and private funding agencies.

Of more than 230 scientists who contributed to the Nature study, Chakravarti is a corresponding author. The lead author is Georg B. Ehret, also of the institute. Other Johns Hopkins authors are Vasyl Pihur, Josef Coresh, Judith A. Hoffman-Bolton, Linda Kao, Anna Kottgen, and J.Hunter Young.

In addition to Chakravarti, Johns Hopkins scientists who contributed to the Nature Genetics study include Georg B. Ehret and Vasyl Pihur.

On the Web:
Chakravarti lab: http://chakravarti.igm.jhmi.edu/AravindaChakravartiLab/Home.html
Nature: http://www.nature.com/nature/index.html
Nature Genetics: http://www.nature.com/ng/index.html
Media Contacts: Maryalice Yakutchik; 443-287-2251; myakutc1@jhmi.edu
Audrey Huang; 410-614-5105; audrey@jhmi.edu
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>