Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome sequencing of fungus with biotechnological applications

02.03.2009
Researchers Antonio G. Pisabarro (Professor of Microbiology) as well as José Luis Lavín and José Antonio Oguiza, from the Genetic and Microbiology Group at the Public University of Navarre, have taken part in the international project for the sequencing of the genome of the Postia placenta fungus.

The results, published recently in the American National Academy of Sciences’ scientific journal (PNAS), has enabled the determination of the mechanisms with which this fungus attacks wood in order to use the cellulose contained within. These results are important for designing processes using wood to produce bioethanol.

For the production of biofuel cereals, beet and other crops (first-generation fuels) have been used as raw material. Nevertheless, the controversies generated by this derived use of food products have made it necessary to look for new raw materials which are not foods and do not affect their price on the market In this sense, food and vegetable waste are a promising alternative (second-generation fuels). Access to the sugar that forms cellulose (the real starting point for the production of alcohol) is difficult in this type of waste. In this context, the results of the study of the P. placenta genome are one more step in the quest for more efficient and less contaminant processes for the production of alcohol from wood.

The project for sequencing and identification of the genes of this fungus, coordinated by Dan Cullen of the University of Wisconsin (USA), has taken two years to complete and 53 researchers from eight countries participated in it. If we were to transcribe in letters the almost 17,000 genes making up the P. placenta genome, we would occupy 7,000 pages with 33 million letters. As Gerardo Pisabarro, the person responsible for the team of researchers at the Public University of Navarre, explained: «the problem is not so much obtaining these seven thousand pages, because there are tools that enable us to do this; but it is reading them, deciphering what they are saying, identifying the genes and finding out how they work».

Fungi with white rot, fungi with brown rot
Trees are rich in cellulose and the sugar that forms part of the tree is mainly found in this polymer. However, unlike what happens with grapes — the sugar of which is easily useable with yeast to produce alcohol —, obtaining glucose (and alcohol) from a tree is not so easy.

«There are two ways to degrade wood, pointed out Mr Pisabarro: there are timbers which, on rotting, go white – as a result of fungi; there are others which go brown, and this is produced by another type of fungus, such as P. placenta». The novelty with this fungus is how it intervenes in the degradation of the wood, its capacity to eat the cellulose without damaging lignin, the substance protecting the tree’s cellulose. When we observe a tree, despite the fact that the cellulose making it up is mostly white, what we see is not white but brown. This is due to the layer of lignin protecting it and which gives it its woody appearance.

«This substance, lignin, protects the cellulose of the tree from attack by other organisms and the tree loses consistence, it rots and is broken down by other organisms; but it also makes it more difficult for us to obtain the sugar to produce alcohol. So, what we have to do is to break up the lignin layer. The fungi which eat (degrade or break up) the lignin leave the cellulose open to view and the tree rots with a coating of white rot. Fungi like P. placenta, nevertheless, are capable of eating the cellulose without damaging the lignin and, in fact, the trees affected by this fungus, on rotting, end up with a brownish colour. Our goal is to find out the modus operandi of these fungi – how they manage to get the cellulose and, in this way, recover the greatest quantity of glucose from the wood in order to use it to produce alcohol».

Apart from the applied research, Professor Gerardo Pisabarro underlines the importance of basic research in genomics and in micro-organisms, given that «essentially all living things are organised in a similar manner. There are aspects of gene regulation that we can study in simples systems such as fungi, and obtain answers applicable to ourselves. We are also witnessing a veritable technological revolution in the sequencing of genomes that will probably enable us to know the sequence of individuals at an acceptable cost to health systems. This will mean a revolution in medicine, both diagnostically and as regards treatment of many illnesses in a more personalised manner».

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=2103&hizk=I

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>