Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome sequence for the domestic horse to be unveiled

06.11.2009
The whole genome sequence of the domestic horse has been completed by the genome-sequencing center of The Broad Institute of MIT and Harvard, in collaboration with an international team of researchers that includes scientists at the University of California, Davis.

Findings from the genome sequence have important implications for improved breeding of horses, which constitute a $39 billion industry in the United States alone, and for studies of human health. They will be reported in the Nov. 6 issue of the journal Science.

"This very high-quality genome sequence of the horse is important because it gives us access to specific sequence information that we can now apply to identify the genes for specific traits in the horse," said geneticist Cecilia Penedo of UC Davis' Veterinary Genetics Laboratory, a co-author on the paper.

As a collaborator in the international Horse Genome Project, Penedo contributed to the genome sequencing effort by supplying DNA from Arabian horses and quarter horses and by working on a horse linkage map, which identified genetic markers for various traits across the horse chromosomes.

Also collaborating on the project from UC Davis were James Murray, a professor of animal science who has worked with the Horse Genome Project since its inception in 1995, and Stephanie Pedroni, then a UC Davis staff researcher and genetics graduate student

"Having access to multiple genome sequences makes it easier to understand all genomes, including our own," Murray said. "By looking at the horse genome, we can better understand human biology and human diseases."

In reporting the horse genome sequence, the researchers noted that there are more than 90 hereditary conditions that affect both humans and horses. Because horses share these conditions, which include infertility, inflammatory diseases and muscle disorders, the horse is an important model for improving the understanding of human diseases.

The sequencing project revealed that the horse genome is somewhat larger than the dog genome and smaller than the human and cow genomes. In comparing the horse and human chromosomes, the researchers discovered that 17 out of 32 -- or 53 percent of -- horse chromosome pairs are composed of material from a single human chromosome, while only 29 percent of dog chromosomes are composed of material from a single human chromosome. This indicates that fewer chromosome rearrangements separate humans from horses than separate humans from dogs.

The researchers were also surprised to find on horse chromosome 11 the existence of an evolutionarily new centromere. Centromeres are key structural features of chromosomes that are necessary for the movement of chromosomes when cells divide, a function that ensures normal distribution of all genetic material to each daughter cell. The functional but evolutionarily immature centromere in the horse may provide a model to study factors responsible for how centromeres function.

Penedo noted that the completion of the high-quality horse genome sequence has provided researchers around the world with ready access to specific gene sequences that can be applied to mapping various traits of the horse.

She and genetics graduate student Leah Brault are using this information in their research focused on identifying the cause of equine cerebellar abiotrophy, a genetic, neurological condition found almost exclusively in Arabian horses. Studies have shown that a horse can carry the gene for equine cerebellar abiotrophy and not be affected by it. However, if two horses carrying the gene are bred, there is a 25-percent likelihood that the resulting foal will manifest the condition, which causes serious neurological problems including head tremors and poor equilibrium.

The sequencing of the horse genome was funded by the National Human Genome Research Institute, the Dorothy Russell Havemeyer Foundation, the Volkswagen Foundation, the Morris Animal Foundation, and the Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale.

Media contacts:

-- Cecilia Penedo, Veterinary Genetics Laboratory, (530) 752-7460 mctorrespenedo@ucdavis.edu

-- James Murray, Animal Science, (530) 752-3179, jdmurray@ucdavis.edu

Patricia Bailey | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>