Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome sequence for the domestic horse to be unveiled

06.11.2009
The whole genome sequence of the domestic horse has been completed by the genome-sequencing center of The Broad Institute of MIT and Harvard, in collaboration with an international team of researchers that includes scientists at the University of California, Davis.

Findings from the genome sequence have important implications for improved breeding of horses, which constitute a $39 billion industry in the United States alone, and for studies of human health. They will be reported in the Nov. 6 issue of the journal Science.

"This very high-quality genome sequence of the horse is important because it gives us access to specific sequence information that we can now apply to identify the genes for specific traits in the horse," said geneticist Cecilia Penedo of UC Davis' Veterinary Genetics Laboratory, a co-author on the paper.

As a collaborator in the international Horse Genome Project, Penedo contributed to the genome sequencing effort by supplying DNA from Arabian horses and quarter horses and by working on a horse linkage map, which identified genetic markers for various traits across the horse chromosomes.

Also collaborating on the project from UC Davis were James Murray, a professor of animal science who has worked with the Horse Genome Project since its inception in 1995, and Stephanie Pedroni, then a UC Davis staff researcher and genetics graduate student

"Having access to multiple genome sequences makes it easier to understand all genomes, including our own," Murray said. "By looking at the horse genome, we can better understand human biology and human diseases."

In reporting the horse genome sequence, the researchers noted that there are more than 90 hereditary conditions that affect both humans and horses. Because horses share these conditions, which include infertility, inflammatory diseases and muscle disorders, the horse is an important model for improving the understanding of human diseases.

The sequencing project revealed that the horse genome is somewhat larger than the dog genome and smaller than the human and cow genomes. In comparing the horse and human chromosomes, the researchers discovered that 17 out of 32 -- or 53 percent of -- horse chromosome pairs are composed of material from a single human chromosome, while only 29 percent of dog chromosomes are composed of material from a single human chromosome. This indicates that fewer chromosome rearrangements separate humans from horses than separate humans from dogs.

The researchers were also surprised to find on horse chromosome 11 the existence of an evolutionarily new centromere. Centromeres are key structural features of chromosomes that are necessary for the movement of chromosomes when cells divide, a function that ensures normal distribution of all genetic material to each daughter cell. The functional but evolutionarily immature centromere in the horse may provide a model to study factors responsible for how centromeres function.

Penedo noted that the completion of the high-quality horse genome sequence has provided researchers around the world with ready access to specific gene sequences that can be applied to mapping various traits of the horse.

She and genetics graduate student Leah Brault are using this information in their research focused on identifying the cause of equine cerebellar abiotrophy, a genetic, neurological condition found almost exclusively in Arabian horses. Studies have shown that a horse can carry the gene for equine cerebellar abiotrophy and not be affected by it. However, if two horses carrying the gene are bred, there is a 25-percent likelihood that the resulting foal will manifest the condition, which causes serious neurological problems including head tremors and poor equilibrium.

The sequencing of the horse genome was funded by the National Human Genome Research Institute, the Dorothy Russell Havemeyer Foundation, the Volkswagen Foundation, the Morris Animal Foundation, and the Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale.

Media contacts:

-- Cecilia Penedo, Veterinary Genetics Laboratory, (530) 752-7460 mctorrespenedo@ucdavis.edu

-- James Murray, Animal Science, (530) 752-3179, jdmurray@ucdavis.edu

Patricia Bailey | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>