Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome Duplication Responsible for More Plant Species than Previously Thought

14.08.2009
Extra genomes appear, on average, to offer no benefit or disadvantage to plants, but still play a key role in the origin of new species, say scientists from Indiana University Bloomington and three other institutions in this week's Proceedings of the National Academy of Sciences.

Plant biologists have long suspected polyploidy -- the heritable acquisition of extra chromosome sets -- was a gateway to speciation. But the consensus was that polyploidy is a minor force, a mere anomaly that accounts for 3 or 4 percent of the world's flowers and ferns.

The first direct, comprehensive survey of polyploid speciation in plant evolution severely challenges that notion.

"In the present paper, we make it clear that it is a common process," said evolutionary biologist and lead author Troy Wood, who began the research during graduate training at IU Bloomington. "Fifteen percent of flowering plant species and almost a third of fern species are directly derived from polyploidy."

Wood is now a research scientist at University of Muenster in Germany.

Could polyploidy provide plants with a powerful advantage over their chromosome-challenged peers? Not necessarily. The scientists' exhaustive survey of published phylogenetic and genomic data also shows that plant lineages starting with a polyploid ancestor appear to be no more successful at spawning species than diploid plants, which have two sets of chromosomes.

"The fact that polyploidy seems to have no effect on diversification rates should reduce the number of enthusiastic commentaries about the 'advantages of polyploidy,'" said IU Bloomington evolutionary biologist and paper coauthor Loren Rieseberg, who supervised the research. "However, our diversification rate analyses only examined recent polyploids. A future area of research should be to ask whether more ancient polyploidy events have increased diversification rates."

Rieseberg holds joint appointments at the University of British Columbia and IU Bloomington.

"The present study developed out of an ongoing project to write a book about plant speciation," Rieseberg said. "I felt that recent estimates of the polyploid speciation rate were too conservative because they did not take genealogical history into account. Troy began compiling chromosome number data and phylogenetic trees so that we could generate a more accurate estimate of the frequency of polyploid speciation."

While the variation that leads to new species is usually a glorious accident, evolutionary biologists are beginning to identify the biological properties of organisms that make those accidents stick around long enough for new species to become established. If whatever separates the new breed from its original population is tenuous, it's possible the new and old populations will comingle, negating the possibility of a new species. Geographic separation or "reproductive isolation" is crucial.

Mechanisms of reproductive isolation are almost as vast and varied as the species they make possible.

In some animals, sudden, heritable changes in the size and shape of genitalia have the potential to prevent some individuals of a population from mating with most of the others. Even though sexually reproducing plants do not rely on this sort of "lock and key"-type of sex matching, they have equivalent, more subtle systems for preventing the wrong pollen from fertilizing their eggs.

Polyploidy can also result in speciation, as polyploid individuals often cannot produce viable offspring with their diploid (two sets of chromosomes) relatives. While the polyploid and diploid individuals may appear more-or-less identical to one another, their genetics make sexual reproduction unlikely or impossible.

Some animals can handle polyploidy, but for most vertebrate species, an extra chromosome set is a death sentence. Humans, for example, can barely tolerate the presence of even one extra chromosome out of the total set of 23. Most human "trisomies," as these are called, result in natural abortion, or miscarriage. Non-lethal human trisomies result in developmental disorders, such as Down Syndrome. Human zygotes with three full sets of chromosomes do not develop.

Plants are pretty special. Not only can many species tolerate extra chromosome sets, but polyploidy appears to be a recurring theme throughout plant evolution. The question is why.

"Recent data reveal evidence of polyploidy in an array of plants, like grapes, poplar trees, corn, and many others," Wood said. "In most of these cases the evidence points to ancient polyploid events. Some species of flowering plants have more than 400 chromosomes and some fern species more than 1,000 due to repeated instances of polyploidy during their evolution. While these examples might seem remarkable, given the high frequency of polyploidy speciation documented here, the bigger surprise would be if plant lineages were found in which polyploidy was absent."

One implication of the PNAS paper is that Wood, Rieseberg, and their coauthors may be getting close to solving the mystery. If extra genomes provide no special advantage over relatives, the ubiquity of polyploidy in plants could simply be because polyploid mutants are commonly produced. Evolutionary change that doesn't involve the plus-or-minus forces of natural selection is called "neutral" in evolutionary biology parlance.

"I really thought we would find evidence that polyploids have an advantage," Wood said. "The idea that the large number of polyploid species and the attending high chromosome numbers might be simply due to a neutral process is intriguing."

Also contributing to the PNAS paper were Naoki Takebayashi of the University of Alaska's Institute of Arctic Biology and Department of Biology and Wildilife, Michael Barker of the University of British Columbia and Indiana University Bloomington, and Itay Mayrose and Philip Greenspoon of the University of British Columbia. It was supported with grants from the Natural Sciences and Engineering Research Council of Canada, the National Science Foundation, and the National Institutes of Health.

To speak with Troy Wood or Loren Rieseberg, please contact David Bricker at 812-856-9035 or brickerd@indiana.edu.

David Bricker | Newswise Science News
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>