Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome analysis of marine microbe reveals a metabolic minimalist

22.02.2010
Flightless birds, blind cave shrimp, and other oddities suggest a "use it or lose it" tendency in evolution. In the microbial world, an unusual marine microorganism appears to have ditched several major metabolic pathways, leaving it with a remarkably reduced set of genes.
This metabolic minimalist is a specialist uniquely suited to performing one very important function: taking nitrogen gas from the atmosphere and "fixing" it into a form that makes this essential nutrient available to other organisms. Nitrogen fixation fertilizes the oceans, controlling overall biological productivity and thereby affecting how much carbon dioxide the oceans absorb from the atmosphere.

Jonathan Zehr, the marine microbiologist who discovered the microbe, said it has stubbornly resisted efforts to grow it in the laboratory. But that hasn't stopped his team from determining the complete DNA sequence of its genome. Genome analysis enabled the researchers to reconstruct the organism's unusual metabolic lifestyle. They published their findings in Nature in a paper available online February 21.

Zehr, a professor of ocean sciences at the University of California, Santa Cruz, characterized the microbe as an atypical member of the cyanobacteria, a group of photosynthetic bacteria formerly known as blue-green algae. Still lacking a formal taxonomic classification, it is known only as UCYN-A. First detected in the open ocean near Hawaii in 1998, it is now known to be periodically abundant in tropical and subtropical waters throughout the world.

"Biogeochemists have never been able to balance the nitrogen budget of the oceans--there seems to be more nitrogen produced than we can account for from known organisms. So this organism may be an important part of the overall nitrogen budget," Zehr said.

In a 2008 paper in Science, Zehr's team reported that UCYN-A is completely lacking the genes for a key component of the photosynthetic apparatus . The missing parts, known as photosystem II, carry out the stage in photosynthesis that generates oxygen by splitting water molecules. This is significant because oxygen inhibits nitrogen fixation. Most nitrogen-fixing cyanobacteria carry out photosynthesis during the day and nitrogen fixation at night, but UCYN-A can fix nitrogen all day long.

The new paper extends the list of UCYN-A's missing metabolic pathways to include, among other things, a process central to aerobic metabolism known as the TCA cycle or Krebs cycle. It also lacks the Calvin cycle, which uses the carbon from carbon dioxide to build sugars, and it is unable to synthesize about half of the 20 essential amino acids.

"This thing is really stripped down," said James Tripp, a bioinformatics specialist at UCSC and lead author of the Nature paper. "My analysis indicates it has to have an outside source to obtain sugars, amino acids, and two out of the four bases needed to make DNA."

Tripp performed the genome analysis reported in the paper. He worked closely with scientists at 454 Life Sciences, a Roche company based in Branford, Conn., that specializes in high-throughput DNA sequencing technology. The researchers applied new genome sequencing and assembly techniques to produce the complete genome sequence from natural samples of DNA. Because UCYN-A cannot be cultured, researchers used a cell-sorting technique called flow cytometry to obtain concentrated samples of the microbe from ocean water, and then extracted DNA from the cells for sequencing.

Although UCYN-A must depend on other organisms for key nutrients, the researchers have found no evidence that it lives in a close symbiotic association with another microorganism. Zehr said the failure to find another organism closely associated with it suggests two possibilities. "It might live in a cryptic association that's very hard to sample because it's fragile and just falls apart, or it may respond to blooms of other phytoplankton and live in the soup of nutrients excreted by other organisms," he said.

One of the striking things about UCYN-A's metabolism is that it lacks essential pathways other organisms use to generate energy for their cells. "Nitrogen fixation takes a lot of energy, but this thing has figured out how to fix nitrogen without the normal pathways used to fuel it in other organisms," Zehr said. "It presents a real evolutionary and ecological paradox."

In addition to Zehr and Tripp, the coauthors of the Nature paper include graduate student Shellie Bench, specialist Kendra Turk, and postdoctoral scholar Rachel Foster in Zehr's lab at UCSC, and Brian Desany, Faheem Niazi, and Jason Affourtit of 454 Life Sciences. This research was supported by the Gordon and Betty Moore Foundation, the National Science Foundation, and the NSF Center for Microbial Oceanography Research and Education.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Life Sciences:

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>