Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics underlie formation of body's back-up bypass vessels

20.08.2010
Researchers at the University of North Carolina at Chapel Hill School of Medicine have uncovered the genetic architecture controlling the growth of the collateral circulation – the "back-up" blood vessels that can provide oxygen to starved tissues in the event of a heart attack or stroke.

The new knowledge could help inform the current development of what are called collaterogenic therapies – drugs or procedures that can cause new collaterals to form and enlarge before or after a person suffers tissue damage from a blocked artery in the heart, brain, or peripheral tissues.

"This has really been the holy grail in our field, how to get new collaterals to form in a tissue with few in the first place" said senior study author James E. Faber, PhD, professor of cell and molecular physiology at UNC. "Our thesis has been that if we can figure out how these endogenous bypasses are formed in the first place in healthy tissues, what mechanisms and genetic pathways drive this, and collaterals abundance varies so widely in healthy individuals, then we may have our answer."

The results of the research, published in the August 20, 2010, issue of the journal Circulation Research, is the first to pinpoint a portion of the genome associated with variation in the density and diameter of collateral vessels.

"This may well be the seminal paper in one of the most important mysteries in vascular biology: the mechanisms controlling collateral formation in the arterial tree," wrote Stephen Schwartz, a professor of physiology at the University of Washington, in a review of the study for Faculty 1000.

The UNC research, conducted in animal models, combined classical genetic mouse crosses with a new genomic technology called association mapping to identify the section of DNA involved, starting with the whole genome, narrowing it down to several hundreds of genes and finally landing on nine candidates on mouse chromosome 7.

The researchers are now looking at these genes to see if any one of them is responsible for variation in collateral formation. Faber says they also cannot discount the possibility that it is not genes that are the deciding factor, but rather regulatory DNA or RNA elements that also reside in that same section of the genome. Either way, Faber hopes they can discover a sequence that could one day be used to predict who is most likely to develop a severe heart attack, stroke, or peripheral limb disease so those individuals can either modify their lifestyle or receive collaterogenic drugs to acquire new and potentially life-saving collateral vessels.

The UNC research was funded by the National Institutes of Health. Study co-authors from UNC include Shiliang Wang, Hua Zhang, Xuming Dai and Robert Sealock.

Les Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

Getting closer to porous, light-responsive materials

26.07.2017 | Materials Sciences

Large, distant comets more common than previously thought

26.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>