Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics underlie formation of body's back-up bypass vessels

20.08.2010
Researchers at the University of North Carolina at Chapel Hill School of Medicine have uncovered the genetic architecture controlling the growth of the collateral circulation – the "back-up" blood vessels that can provide oxygen to starved tissues in the event of a heart attack or stroke.

The new knowledge could help inform the current development of what are called collaterogenic therapies – drugs or procedures that can cause new collaterals to form and enlarge before or after a person suffers tissue damage from a blocked artery in the heart, brain, or peripheral tissues.

"This has really been the holy grail in our field, how to get new collaterals to form in a tissue with few in the first place" said senior study author James E. Faber, PhD, professor of cell and molecular physiology at UNC. "Our thesis has been that if we can figure out how these endogenous bypasses are formed in the first place in healthy tissues, what mechanisms and genetic pathways drive this, and collaterals abundance varies so widely in healthy individuals, then we may have our answer."

The results of the research, published in the August 20, 2010, issue of the journal Circulation Research, is the first to pinpoint a portion of the genome associated with variation in the density and diameter of collateral vessels.

"This may well be the seminal paper in one of the most important mysteries in vascular biology: the mechanisms controlling collateral formation in the arterial tree," wrote Stephen Schwartz, a professor of physiology at the University of Washington, in a review of the study for Faculty 1000.

The UNC research, conducted in animal models, combined classical genetic mouse crosses with a new genomic technology called association mapping to identify the section of DNA involved, starting with the whole genome, narrowing it down to several hundreds of genes and finally landing on nine candidates on mouse chromosome 7.

The researchers are now looking at these genes to see if any one of them is responsible for variation in collateral formation. Faber says they also cannot discount the possibility that it is not genes that are the deciding factor, but rather regulatory DNA or RNA elements that also reside in that same section of the genome. Either way, Faber hopes they can discover a sequence that could one day be used to predict who is most likely to develop a severe heart attack, stroke, or peripheral limb disease so those individuals can either modify their lifestyle or receive collaterogenic drugs to acquire new and potentially life-saving collateral vessels.

The UNC research was funded by the National Institutes of Health. Study co-authors from UNC include Shiliang Wang, Hua Zhang, Xuming Dai and Robert Sealock.

Les Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>