Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics defines a distinct liver disease

22.04.2013
Large-scale genetic study defines relationship between primary sclerosing cholangitis and other autoimmune diseases

Researchers have newly associated nine genetic regions with a rare autoimmune disease of the liver known as primary sclerosing cholangitis (PSC). This brings the total number of genetic regions associated with the disease to 16.

Approximately 70 per cent of people who suffer from PSC also suffer from IBD. The team showed that only half of the newly associated genetic regions were shared with inflammatory bowel disease (IBD). For the first time, this definitively proves that PSC, although genetically related to IBD, is a distinct disease.

PSC is a chronic, progressive disease of the bile ducts that channels bile from the liver into the intestines. It can cause inflammation of the bile ducts (cholangitis) and liver scarring that leads to liver cirrhosis and liver failure. There are no effective treatments available. Although PSC affects only one in 10,000 people, it is a leading cause of liver transplant surgery.

"Before our study, it was never quite clear whether PSC was a complication of IBD or a distinct disease in its own right," says Dr Carl Anderson, lead author from the Wellcome Trust Sanger Institute. "We have proven it to be a unique disease, and hope that our results will inform the development of more effective treatments, designed to target the biological pathways involved in causing the disease".

The work involved an international group of scientists from the International PSC study group recruiting patients from 13 countries within Europe and North America. Without this large collaborative effort it would not have been possible to obtain the large number of patient DNA samples necessary for the study.

The team used DNA genotyping technology to survey more thoroughly regions of the genome known to underlie other immune-related diseases to discover if they also play a role in PSC susceptibility.

In addition to the nine genetic regions newly associated, they also saw strong signals at three regions of the genome previously associated with the disease. Of these twelve genetic regions, six are also associated with IBD, while the six other regions showed little to no association in a recent large study of IBD.

"Using the Immunochip genotyping chip, we can pull apart the genetic relationships between these autoimmune diseases and begin to see not only their genetic similarities, but also the differences," says Jimmy Liu, PhD student and first author from the Wellcome Trust Sanger Institute. "As PSC is a rare disorder, sample collection is more difficult than for other, more common, autoimmune diseases. We hope that with more samples from patients, we'll be able to link more genetic regions to the disease, and it will become easier to identify underlying pathways that could act as therapeutic targets."

Three of the genetic regions associated with PSC fall within a single biological system that underlies variation in T cells, cells important to our immune response. One gene that controls this pathway, HDAC7, is known to be a key factor in immune tolerance and the new data strongly suggests exploring the possibility that drugs affecting HDAC7 function may serve as future therapeutics in PSC.

In an extended analysis, the team identified an additional 33 genetic regions that are also involved in several common immune-mediated conditions (celiac disease, Crohn's disease, ulcerative colitis, type 1 diabetes, rheumatoid arthritis, sarcoidosis and psoriasis). This analysis shows that PSC shares many genetic risk loci with other immune-mediated diseases and opens up the possibility for testing drugs known to be effective in genetically similar diseases for efficacy in PSC.

The next step for the team is to do a high-powered search throughout the entire genomes of PSC patients to find specific regions associated with PSC outside of the regions included on the Immunochip genotyping chip.

"This study has uncovered more about the genetics underlying PSC than any before it, but this is only the first step" says Dr Tom Hemming Karlsen, lead author from Oslo University Hospital, Norway. "We hope the ongoing scientific and clinical research being conducted through the International PSC study group will help improve the outlook for those currently suffering at the hands of this disease"

"Our study, which is the largest of its type for PSC, would not have been possible without the help of the patients with this rare disorder," adds Dr Hemming Karlsen.

Notes to Editors

Publication Details

Jimmy Z Liu, Johannes Roksund Hov, Trine Folseraas et al (2013) "Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis"

Advance online publication on Nature Genetics's website on 21 April. DOI: 10.1038/ng.2616

Funding

A full list of funding can be found in the paper

Participating Centres

A full list of participating centres can be found in the paper

Selected Websites

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.

http://www.sanger.ac.uk
The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.

http://www.wellcome.ac.uk
Contact details
Don Powell Media Manager
Wellcome Trust Sanger Institute
Hinxton, Cambridge, CB10 1SA, UK
Tel +44 (0)1223 496 928
Mobile +44 (0)7753 7753 97
Email press.office@sanger.ac.uk

Aileen Sheehy | EurekAlert!
Further information:
http://www.sanger.ac.uk

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>