Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geneticists Hunt for Scleroderma Triggers

02.11.2009
At its most benign, the autoimmune disease scleroderma can discolor parts of the skin of its sufferers. At its most pernicious, it can thicken and harden their skin, their blood vessels, and their internal organs before, in many cases, killing them.

In all its forms, scleroderma gives Dartmouth geneticist Michael Whitfield, his graduate students, and his postdoctoral researchers a sense of urgency in their search for the triggers of the chronic condition.

In a study that the Journal of Investigative Dermatology published in its October 2009 edition, Whitfield's team reports a closer connection between a gene profile for the profibrotic pathway TGF-beta and a tendency in some scleroderma sufferers to develop lung problems.

Jennifer Sargent, who recently earned her Ph.D. in molecular and cellular biology from DMS, is lead author of the study, which analyzed the previously-identified TGF-beta pathway signature in skin biopsies from patients and healthy control subjects from around the country.

"The finding that a gene signature expressed in skin is associated with the occurrence of lung disease is surprising and to our knowledge is previously unreported," the report says. "ILD [interstitial lung disease] is the leading cause of death among patients with dSSc [diffuse systemic sclerosis]. . . . Recent work has developed tools and methods for diagnosis, staging, and characterization of ILD in dSSc patients; however, biomarkers that reliably predict who will develop lung complications before they become symptomatic would be beneficial."

In collaboration with M. Kari Connolly, a professor of dermatology at the University of California-San Francisco, Whitfield, an associate professor of genetics at DMS, and his researchers began creating a map of skin to profile the molecular behavior of genes in scleroderma in 2001.

For the current study, he received support from the Scleroderma Research Foundation, as well as a biomedical research award to Dartmouth from the Howard Hughes Medical Institute.

"Several different pathways likely contribute to the gene expression subsets in scleroderma, and each subset may need to be treated differently," Whitfield says, before adding, "We're getting inquiries from rheumatologists and companies that are looking at drug trials."

In 2008, with DMS postdoctoral fellow Ausra Milano as lead author, Whitfield's group profiled gene expression to divide scleroderma patients into different categories. Those findings prompted Sargent, who participated in the 2008 study, to start mapping the genetic pathways that the disease follows in the subset of patients with the most severe cases. She will continue her experiments as a postdoctoral fellow with Whitfield, before going to work at the National Institutes of Health in January of 2010.

David A. Corriveau | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>