Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic variation in East Asians found to explain resistance to cancer drugs

19.03.2012
A multi-national research team led by scientists at Duke-NUS Graduate Medical School has identified the reason why some patients fail to respond to some of the most successful cancer drugs.

Tyrosine kinase inhibitor drugs (TKIs) work effectively in most patients to fight certain blood cell cancers, such as chronic myelogenous leukemia (CML), and non-small-cell lung cancers (NSCLC) with mutations in the EGFR gene.

These precisely targeted drugs shut down molecular pathways that keep these cancers flourishing and include TKIs for treating CML, and the form of NSCLC with EGFR genetic mutations.

Now the team at Duke-NUS Graduate Medical School in Singapore, working with the Genome Institute of Singapore (GIS), Singapore General Hospital and the National Cancer Centre Singapore, has discovered that there is a common variation in the BIM gene in people of East Asian descent that contributes to some patients' failure to benefit from these tyrosine kinase inhibitor drugs.

"Because we could determine in cells how the BIM gene variant caused TKI resistance, we were able to devise a strategy to overcome it," said S. Tiong Ong, M.B.B. Ch., senior author of the study and associate professor in the Cancer and Stem Cell Biology Signature Research Programme at Duke-NUS and Division of Medical Oncology, Department of Medicine, at Duke University Medical Center.

"A novel class of drugs called the BH3-mimetics provided the answer," Ong said. "When the BH3 drugs were added to the TKI therapy in experiments conducted on cancer cells with the BIM gene variant, we were able to overcome the resistance conferred by the gene. Our next step will be to bring this to clinical trials with patients."

Said Yijun Ruan, Ph.D., a co-senior author of this study and associate director for Genome Technology and Biology at GIS: "We used a genome-wide sequencing approach to specifically look for structural changes in the DNA of patient samples. This helped in the discovery of the East Asian BIM gene variant. What's more gratifying is that this collaboration validates the use of basic genomic technology to make clinically important discoveries."

The study was published online in Nature Medicine on March 18.

If the drug combination does override TKI resistance in people, this will be good news for those with the BIM gene variant, which occurs in about 15 percent of the typical East Asian population. By contrast, no people of European or African ancestry were found to have this gene variant.

"While it's interesting to learn about this ethnic difference for the mutation, the greater significance of the finding is that the same principle may apply for other populations," said Patrick Casey, Ph.D., senior vice dean for research at Duke-NUS and James B. Duke Professor of Pharmacology and Cancer Biology. "There may well be other, yet to be discovered gene variations that account for drug resistance in different world populations. These findings underscore the importance of learning all we can about cancer pathways, mutations, and treatments that work for different types of individuals. This is how we can personalize cancer treatment and, ultimately, control cancer."

"We estimate that about 14,000 newly diagnosed East Asian CML and EGFR non-small-cell lung cancer patients per year will carry the gene variant," Ong said. "Notably, EGFR NSCLC is much more common in East Asia, and accounts for about 50 percent of all non-small-cell lung cancers in East Asia, compared to only 10 percent in the West."

The researchers found that drug resistance occurred because of impaired production of BH3-containing forms of the BIM protein. They confirmed that restoring BIM gene function with the BH3 drugs worked to overcome TKI resistance in both types of cancer.

"BH3-mimetic drugs are already being studied in clinical trials in combination with chemotherapy, and we are hopeful that BH3 drugs in combination with TKIs can actually overcome this form of TKI resistance in patients with CML and EGFR non-small-cell lung cancer," Ong said. "We are working closely with GIS and the commercialization arm of the Agency for Science, Technology & Research (A*STAR), to develop a clinical test for the BIM gene variant, so that we can take our discovery quickly to the patient."

The major contributors to the study include additional researchers and teams from the Duke-NUS Graduate Medical School, Genome Institute of Singapore (Dr. Yijun Ruan and Dr. Axel Hillmer), Singapore General Hospital (Dr. Charles Chuah), and National Cancer Centre Singapore (Dr. Darren Wan-Teck Lim).

In addition, the investigators also received important contributions from Akita University Graduate School of Medicine, Japan (Dr. Naoto Takahashi), the Cancer Science Institute of Singapore (Dr. Ross Soo), the National University Cancer Institute of Singapore (Drs. Liang Piu Koh and Tan Min Chin), the Yong Loo Lin School of Medicine, National University of Singapore (Dr. Seet Ju Ee), the University of Bonn, Germany (Dr. Markus Nöthen), the University of Malaya (Dr. Veera Nadarajan), and the University of Tokyo, Japan (Dr. Hiroyuki Mano).

The study was supported by grants from the National Medical Research Council (NMRC) of Singapore; Biomedical Research Council (BMRC) of A*STAR, Singapore; Genome Institute of Singapore; Singapore General Hospital; and two NMRC Clinician Scientist Awards to Dr. Ong and Dr Chuah.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>