Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic variation in East Asians found to explain resistance to cancer drugs

19.03.2012
A multi-national research team led by scientists at Duke-NUS Graduate Medical School has identified the reason why some patients fail to respond to some of the most successful cancer drugs.

Tyrosine kinase inhibitor drugs (TKIs) work effectively in most patients to fight certain blood cell cancers, such as chronic myelogenous leukemia (CML), and non-small-cell lung cancers (NSCLC) with mutations in the EGFR gene.

These precisely targeted drugs shut down molecular pathways that keep these cancers flourishing and include TKIs for treating CML, and the form of NSCLC with EGFR genetic mutations.

Now the team at Duke-NUS Graduate Medical School in Singapore, working with the Genome Institute of Singapore (GIS), Singapore General Hospital and the National Cancer Centre Singapore, has discovered that there is a common variation in the BIM gene in people of East Asian descent that contributes to some patients' failure to benefit from these tyrosine kinase inhibitor drugs.

"Because we could determine in cells how the BIM gene variant caused TKI resistance, we were able to devise a strategy to overcome it," said S. Tiong Ong, M.B.B. Ch., senior author of the study and associate professor in the Cancer and Stem Cell Biology Signature Research Programme at Duke-NUS and Division of Medical Oncology, Department of Medicine, at Duke University Medical Center.

"A novel class of drugs called the BH3-mimetics provided the answer," Ong said. "When the BH3 drugs were added to the TKI therapy in experiments conducted on cancer cells with the BIM gene variant, we were able to overcome the resistance conferred by the gene. Our next step will be to bring this to clinical trials with patients."

Said Yijun Ruan, Ph.D., a co-senior author of this study and associate director for Genome Technology and Biology at GIS: "We used a genome-wide sequencing approach to specifically look for structural changes in the DNA of patient samples. This helped in the discovery of the East Asian BIM gene variant. What's more gratifying is that this collaboration validates the use of basic genomic technology to make clinically important discoveries."

The study was published online in Nature Medicine on March 18.

If the drug combination does override TKI resistance in people, this will be good news for those with the BIM gene variant, which occurs in about 15 percent of the typical East Asian population. By contrast, no people of European or African ancestry were found to have this gene variant.

"While it's interesting to learn about this ethnic difference for the mutation, the greater significance of the finding is that the same principle may apply for other populations," said Patrick Casey, Ph.D., senior vice dean for research at Duke-NUS and James B. Duke Professor of Pharmacology and Cancer Biology. "There may well be other, yet to be discovered gene variations that account for drug resistance in different world populations. These findings underscore the importance of learning all we can about cancer pathways, mutations, and treatments that work for different types of individuals. This is how we can personalize cancer treatment and, ultimately, control cancer."

"We estimate that about 14,000 newly diagnosed East Asian CML and EGFR non-small-cell lung cancer patients per year will carry the gene variant," Ong said. "Notably, EGFR NSCLC is much more common in East Asia, and accounts for about 50 percent of all non-small-cell lung cancers in East Asia, compared to only 10 percent in the West."

The researchers found that drug resistance occurred because of impaired production of BH3-containing forms of the BIM protein. They confirmed that restoring BIM gene function with the BH3 drugs worked to overcome TKI resistance in both types of cancer.

"BH3-mimetic drugs are already being studied in clinical trials in combination with chemotherapy, and we are hopeful that BH3 drugs in combination with TKIs can actually overcome this form of TKI resistance in patients with CML and EGFR non-small-cell lung cancer," Ong said. "We are working closely with GIS and the commercialization arm of the Agency for Science, Technology & Research (A*STAR), to develop a clinical test for the BIM gene variant, so that we can take our discovery quickly to the patient."

The major contributors to the study include additional researchers and teams from the Duke-NUS Graduate Medical School, Genome Institute of Singapore (Dr. Yijun Ruan and Dr. Axel Hillmer), Singapore General Hospital (Dr. Charles Chuah), and National Cancer Centre Singapore (Dr. Darren Wan-Teck Lim).

In addition, the investigators also received important contributions from Akita University Graduate School of Medicine, Japan (Dr. Naoto Takahashi), the Cancer Science Institute of Singapore (Dr. Ross Soo), the National University Cancer Institute of Singapore (Drs. Liang Piu Koh and Tan Min Chin), the Yong Loo Lin School of Medicine, National University of Singapore (Dr. Seet Ju Ee), the University of Bonn, Germany (Dr. Markus Nöthen), the University of Malaya (Dr. Veera Nadarajan), and the University of Tokyo, Japan (Dr. Hiroyuki Mano).

The study was supported by grants from the National Medical Research Council (NMRC) of Singapore; Biomedical Research Council (BMRC) of A*STAR, Singapore; Genome Institute of Singapore; Singapore General Hospital; and two NMRC Clinician Scientist Awards to Dr. Ong and Dr Chuah.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>