Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Testing May Be Valuable in Treating Colorectal Cancer

29.07.2009
Weill Cornell Medical College Cost Effectiveness Study Looks at Potential Value of New Genetic Test for Guiding Chemotherapy Treatment

For the 29,000 patients in the United States with metastatic colorectal cancer, chemotherapy with irinotecan is a standard treatment that has been shown to improve survival.

But for more than one in 10 of these patients, a variation in their DNA means that this treatment could result in a severe reduction in their white blood cell count, leading to a high risk of bacterial infection and possible subsequent death. A new genetic test can identify those with the variation in order to lower the treatment dose — however, it has been unclear whether the testing is worthwhile.

A new cost-effectiveness study led by scientists at Weill Cornell Medical College has determined that so-called pretreatment pharmacogenetic testing is only beneficial if dose-reduced treatment is shown to be nearly as effective as the full dose. If the lower dose is as effective, the test could prevent many cases of severe neutropenia, an abnormally low count of an important type of white blood cells known as neutrophils. It would also mean better life expectancy and lower cost of care.

The study appears online in the journal Cancer and is expected in print in the Sept. 1 issue.

"Pharmacogenetic testing is a relatively new treatment innovation that may prove to be a valuable tool for clinicians as they develop personalized treatments for cancer patients to minimize side effects while maintaining outcomes," says lead author Dr. Heather Taffet Gold, assistant professor in the Division of Health Policy in the Department of Public Health at Weill Cornell Medical College. "Our study points to significant potential benefits for pretreatment pharmacogenetic testing for metastatic colorectal cancer, but remains to be verified by clinical research."

The study used a computer simulation model that follows hypothetical patients treated with the FOLFIRI (5-fluorouracil/leucovorin with irinotecan) chemotherapy regimen for metastatic colorectal cancer. The model assumed that under usual care, patients received a full dose of irinotecan. With genetic testing, irinotecan dosage was reduced 25 percent in individuals identified using the genetic test as having the UGT1A1*28 variant allele. The dose reduction is specified in the Food and Drug Administration–approved drug label to minimize cases of neutropenia.

Dr. Bruce Schackman, senior author of the study, says, "Cost-effectiveness evaluations of pharmacogenetic tests can provide important insights into both the clinical and economic value of these new treatment paradigms, but few of these types of studies have been conducted. Importantly, these studies also allow us to define in economic terms the value of additional comparative effectiveness research. In this case, we've determined that further research of up to $22 million should be conducted to study the risks and benefits of dose reductions based on the results of the genetic test."

Dr. Schackman is associate professor of public health and chief of the Division of Health Policy in the Department of Public Health at Weill Cornell Medical College.

"This study is an important example of how the combined use of cost-effectiveness analysis and pharmacogenetic testing can improve treatment outcomes," says Dr. Alvin I. Mushlin, Professor and Chairman of the Weill Cornell Department of Public Health. "Both methods are becoming increasingly integral to the advancement of evidence-based medicine."

Additional co-authors include Drs. Michael J. Hall of Fox Chase Cancer Center in Philadelphia and Victoria Blinder of Memorial Sloan-Kettering Cancer Center in New York.

The study received support from the American Cancer Society and the Agency for Healthcare Research and Quality (AHRQ) via Weill Cornell's Center for Education and Research on Therapeutics (CERT).

Weill Cornell Medical College
Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Weill Cornell, which is a principal academic affiliate of NewYork-Presbyterian Hospital, offers an innovative curriculum that integrates the teaching of basic and clinical sciences, problem-based learning, office-based preceptorships, and primary care and doctoring courses. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research in areas such as stem cells, genetics and gene therapy, geriatrics, neuroscience, structural biology, cardiovascular medicine, transplantation medicine, infectious disease, obesity, cancer, psychiatry and public health — and continue to delve ever deeper into the molecular basis of disease and social determinants of health in an effort to unlock the mysteries of the human body in health and sickness. In its commitment to global health and education, the Medical College has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances — including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, the first indication of bone marrow's critical role in tumor growth, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient.

Andrew Klein | EurekAlert!
Further information:
http://www.med.cornell.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>