Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Testing May Be Valuable in Treating Colorectal Cancer

29.07.2009
Weill Cornell Medical College Cost Effectiveness Study Looks at Potential Value of New Genetic Test for Guiding Chemotherapy Treatment

For the 29,000 patients in the United States with metastatic colorectal cancer, chemotherapy with irinotecan is a standard treatment that has been shown to improve survival.

But for more than one in 10 of these patients, a variation in their DNA means that this treatment could result in a severe reduction in their white blood cell count, leading to a high risk of bacterial infection and possible subsequent death. A new genetic test can identify those with the variation in order to lower the treatment dose — however, it has been unclear whether the testing is worthwhile.

A new cost-effectiveness study led by scientists at Weill Cornell Medical College has determined that so-called pretreatment pharmacogenetic testing is only beneficial if dose-reduced treatment is shown to be nearly as effective as the full dose. If the lower dose is as effective, the test could prevent many cases of severe neutropenia, an abnormally low count of an important type of white blood cells known as neutrophils. It would also mean better life expectancy and lower cost of care.

The study appears online in the journal Cancer and is expected in print in the Sept. 1 issue.

"Pharmacogenetic testing is a relatively new treatment innovation that may prove to be a valuable tool for clinicians as they develop personalized treatments for cancer patients to minimize side effects while maintaining outcomes," says lead author Dr. Heather Taffet Gold, assistant professor in the Division of Health Policy in the Department of Public Health at Weill Cornell Medical College. "Our study points to significant potential benefits for pretreatment pharmacogenetic testing for metastatic colorectal cancer, but remains to be verified by clinical research."

The study used a computer simulation model that follows hypothetical patients treated with the FOLFIRI (5-fluorouracil/leucovorin with irinotecan) chemotherapy regimen for metastatic colorectal cancer. The model assumed that under usual care, patients received a full dose of irinotecan. With genetic testing, irinotecan dosage was reduced 25 percent in individuals identified using the genetic test as having the UGT1A1*28 variant allele. The dose reduction is specified in the Food and Drug Administration–approved drug label to minimize cases of neutropenia.

Dr. Bruce Schackman, senior author of the study, says, "Cost-effectiveness evaluations of pharmacogenetic tests can provide important insights into both the clinical and economic value of these new treatment paradigms, but few of these types of studies have been conducted. Importantly, these studies also allow us to define in economic terms the value of additional comparative effectiveness research. In this case, we've determined that further research of up to $22 million should be conducted to study the risks and benefits of dose reductions based on the results of the genetic test."

Dr. Schackman is associate professor of public health and chief of the Division of Health Policy in the Department of Public Health at Weill Cornell Medical College.

"This study is an important example of how the combined use of cost-effectiveness analysis and pharmacogenetic testing can improve treatment outcomes," says Dr. Alvin I. Mushlin, Professor and Chairman of the Weill Cornell Department of Public Health. "Both methods are becoming increasingly integral to the advancement of evidence-based medicine."

Additional co-authors include Drs. Michael J. Hall of Fox Chase Cancer Center in Philadelphia and Victoria Blinder of Memorial Sloan-Kettering Cancer Center in New York.

The study received support from the American Cancer Society and the Agency for Healthcare Research and Quality (AHRQ) via Weill Cornell's Center for Education and Research on Therapeutics (CERT).

Weill Cornell Medical College
Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Weill Cornell, which is a principal academic affiliate of NewYork-Presbyterian Hospital, offers an innovative curriculum that integrates the teaching of basic and clinical sciences, problem-based learning, office-based preceptorships, and primary care and doctoring courses. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research in areas such as stem cells, genetics and gene therapy, geriatrics, neuroscience, structural biology, cardiovascular medicine, transplantation medicine, infectious disease, obesity, cancer, psychiatry and public health — and continue to delve ever deeper into the molecular basis of disease and social determinants of health in an effort to unlock the mysteries of the human body in health and sickness. In its commitment to global health and education, the Medical College has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances — including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, the first indication of bone marrow's critical role in tumor growth, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient.

Andrew Klein | EurekAlert!
Further information:
http://www.med.cornell.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>