Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic test identifies eye cancer tumors likely to spread

15.05.2012
Researchers at Washington University School of Medicine in St. Louis have developed a genetic test that can accurately predict whether the most common form of eye cancer will spread to other parts of the body, particularly the liver.

In 459 patients with ocular melanoma at 12 centers in the United States and Canada, the researchers found the test could successfully classify tumors more than 97 percent of the time.

The study will appear in an upcoming issue of the journal Ophthalmology, but is now online.

“When the cancer spreads beyond the eye, it’s unlikely any therapy is going to be effective,” says principal investigator J. William Harbour, MD. “But it’s very possible that we can develop treatments to slow the growth of metastatic tumors. The real importance of this test is that by identifying the type of tumor a patient has, we can first remove the tumor from the eye with surgery or radiation and then get those individuals at high risk into clinical trials that might be able to help them live longer.”

Harbour believes the test should allow ocular oncologists to quickly evaluate the risks associated with particular tumors and to begin treatment the moment they can detect any spread of the cancer.

Melanoma of the eye is relatively rare, diagnosed in about 2,000 people in the United States each year. Advances in treatment have allowed surgeons to preserve patients’ vision, but when cancer spreads beyond the eye, it often is deadly.

About a decade ago, Harbour, the Paul A. Cibis Distinguished Professor of Ophthalmology and Visual Sciences, began using gene expression profiling to monitor the activity of thousands of genes in and around ocular melanoma tumors.

“At the time, we were surprised to see that based on these gene expression profiles, the tumors clustered into two groups that corresponded, almost perfectly, to patients whose cancer spread and those whose cancer was confined within the eye,” says Harbour, who directs Washington University’s Center for Ocular Oncology. “Tumors with a class 1 gene expression profile, or ‘signature,’ very rarely spread, but those with a class 2 profile frequently develop into metastatic cancer.”

Initially, Harbour’s group identified differences in approximately 1,000 genes between class 1 and class 2 tumors, but they whittled down that number, hoping to develop a simple test that could be used easily by ophthalmologists. Eventually, they settled on about a dozen genes that could be evaluated in tumor samples collected with a needle biopsy.

“We went through a number of sophisticated algorithms and validations, and we came up with a group of 12 genes,” he says. “We also included three more genes that don’t change whether they are in tumor tissue or healthy tissue. Those genes act as our ‘controls’ in this prognostic test.”

Testing tumor tissue from his own ocular melanoma patients at the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University in St. Louis, Harbour found that the gene expression profile test was very good at identifying the two classes of tumors. Then he started recruiting other centers to test the method, too.

“It doesn’t make for a good test if it works really well for us, but it doesn’t really work for anybody else,” Harbour says.

Doctors at the other centers collected tumor samples and shipped them to Harbour’s lab. Not knowing anything about which tumor samples came from which patients, the lab then analyzed the samples and made predictions about which tumors were likely to spread. Although it can take up to five years before there is any evidence that cancer has spread beyond the eye, this study went back less than two years later and tested predictions against what actually had happened.

Almost 62 percent of those tested (276 patients) had class 1 tumors, which were unlikely to spread. About a year and a half after the samples were tested, only three of those tumors had metastasized. Meanwhile, 38 percent of those tested (170 patients) had class 2 tumors, indicating that spread of the cancer was more likely. In that group, 44 (26 percent) developed metastatic disease during the study period. Had patients been followed longer, more likely would have experienced spread of their cancer. Statistical predictions estimate that among class 2 patients, about 60 percent would have metastatic disease within three years, and approximately 80 percent in five years.

“In this relatively short study period, the test worked as well as in the larger group of patients as it had in our patients,” Harbour says. “That was important because it validated not only that our test was an accurate predictor of which patients will develop metastasis, but it also proved that the test can be performed successfully in most other clinics. At the moment, more than 70 centers around the world are using a commercially available version of the same test.”

In the past, some centers relied on a chromosome test to identify eye tumors that were likely to spread. That test looked at chromosome 3 because many ocular melanoma tumors have only one copy of that chromosome.

But the 15-gene expression profile test is more accurate. It takes a more complete “snapshot” of the entire tumor. Harbour says the results of the chromosome test can change, depending on which part of a tumor gets sampled.

“I compare it to how our brains recognize faces,” he says. “We don’t just focus on somebody’s nose. We take in all of the information from the entire face. This test takes information from the entire tumor, so if the ‘nose’ in the ‘picture’ is out of focus for some reason, it still can analyze other things.”

Another strength of the test, he says, is that it can identify which patients will need the closest monitoring.

“Here at Washington University, for example, we monitor patients with class 2 tumors every three months and can begin treatment right away if we find evidence that a tumor has spread,” he says.

On the other hand, the current study found that more than 60 percent of patients with ocular melanoma have class 1 tumors. Those patients don’t need to be followed with the same frequency.

“We won’t have to use high-intensity surveillance on everyone, only on those patients with a class 2 molecular signature, because they’re the ones at risk for metastatic cancer,” Harbour says.

Onken MD, et al. Collaborative Ocular Oncology Group report number 1: prospective validation of a multi-gene prognostic assay in uveal melanoma. Ophthalmology, vol. 119, Advance online publication. http://dx.doi.org/10.1016/j.ophtha.2012.02.017

J. William Harbour, MD, and Washington University may receive royalties based on a license of related technology by the university to Castle Biosciences Inc. This research was not funded by Castle Biosciences, Inc.

Funding for this research comes from the National Cancer Institute and the National Eye Institute of the National Institutes of Health (NIH), the Barnes-Jewish Hospital Foundation, Kling Family Foundation, Tumori Foundation, Horncreast Foundation, a Research to Prevent Blindness David F. Weeks Professorship and a Research to Prevent Blindness Inc. unrestricted grant.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>