Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic techniques have role in future of dental care

06.03.2014

A visit to the dentist could one day require a detailed look at how genes in a patient's body are being switched on or off, as well as examining their pearly whites, according to researchers at the University of Adelaide.

In a new paper published in the Australian Dental Journal, researchers from the University of Adelaide's School of Dentistry have written about the current and future use of the field of epigenetics as it relates to oral health.

Speaking on Dentist's Day (Thursday 6 March), co-author Associate Professor Toby Hughes says epigenetics has much to offer in the future treatment and prevention of dental disease.

"Our genetic code, or DNA, is like an orchestra - it contains all of the elements we need to function - but the epigenetic code is essentially the conductor, telling which instruments to play or stay silent, or how to respond at any given moment," Associate Professor Hughes says.

"This is important because, in the case of oral health, epigenetic factors may help to orchestrate healthy and unhealthy states in our mouths. They respond to the current local environment, such as the type and level of our oral microbes, regulating which of our genes are active. This means we could use them to determine an individual's state of health, or even influence how their genes behave. We can't change the underlying genetic code, but we may be able to change when genes are switched on and off," he says.

Associate Professor Hughes is part of a team of researchers at the University of Adelaide that has been studying the underlying genetic and environmental influences on dental development and oral health.

He says that since the completion of the Human Genome Project in 2007, epigenetics has had an increasing role in biological and medical research.

"Dentistry can also greatly benefit from new research in this area," he says. "It could open up a range of opportunities for diagnosis, treatment and prevention.

"We know that our genome plays a key role in our dental development, and in a range of oral diseases; we know that the oral microbiota also play a key role in the state of our oral health; we now have the potential to develop an epigenetic profile of a patient, and use all three of these factors to provide a more personalized level of care.

"Other potential oral health targets for the study of epigenetics include the inflammation and immune responses that lead to periodontitis, which can cause tooth loss; and the development and progression of oral cancers.

"What's most exciting is the possibility of screening for many of these potential oral health problems from an early age so that we can prevent them or reduce their impact."

###

The full paper can be found at the Australian Dental Journal's website.

Media contact:

Associate Professor Toby Hughes
School of Dentistry
The University of Adelaide
Phone: +61 8 8313 3295
toby.hughes@adelaide.edu.au

Toby Hughes | EurekAlert!

Further reports about: Dental Dentistry Genetic epigenetic genes inflammation oral techniques

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>